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Abstract

Maximum overlap methods are effective tools for optimizing challenging ground- and

excited-state wave functions using self-consistent field models such as Hartree-Fock

and Kohn-Sham density functional theory. Nevertheless, such models have shown

significant sensitivity to the user-defined initial guess of the target wave function. In

this work, a projection operator framework is defined and used to provide a metric

for non-aufbau orbital selection in maximum-overlap-methods. The resulting algo-

rithms, termed the Projection-based Maximum Overlap Method (PMOM) and

Projection-based Initial Maximum Overlap Method (PIMOM), are shown to perform

exceptionally well when using simple user-defined target solutions based on occu-

pied/virtual molecular orbital permutations. This work also presents a new metric

that provides a simple and conceptually convenient measure of agreement between

the desired target and the current or final SCF results during a calculation employing

a maximum-overlap method.
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1 | INTRODUCTION

Efficient and reliable methods for studying excited electronic states

and exotic ground state problems are essential for the application of

electronic structure theory to frontier problems in chemistry. In the

last few decades, computational chemistry has experienced extraordi-

nary advances in ground state and excited state methodologies.1–7 In

particular, ground state Kohn-Sham (KS) Density Functional Theory

(DFT) and linear response time dependent Density Functional Theory

(TD-DFT) have become the workhorses of modern computational

chemistry. Despite these advancements, practitioners often experi-

ence significant challenges with both ground and excited state calcu-

lations. In many cases, the desired electronic structure can be quite

challenging to locate as part of standard self–consistent field (SCF)

optimizations, if not entirely elusive. Without a reliable methodology

or metric to guide these choices, such studies often rely on equal

parts science and art by the practitioner.

With respect to electronic excited states, single reference models

are often preferred due to their attractive computational scaling and

conceptual advantages. For example, methods such as configuration–

interaction with singles substitutions (CIS) and (linear response) TD-

DFT are among the most commonly used models for characterizing

excited states of molecules.8–24 In particular, the approximate inclu-

sion of electron correlation effects and its computational feasibility

have made TD-DFT the most widely used method for calculating

excited states energies.

Despite its success, popularity, and broad applicability, TD-DFT

has a number of challenges. Current TD-DFT approximations give

significant errors for excited states arising from π–electron excita-

tions25,26 and may not accurately describe charge–transfer

(CT) processes.27–29 For such cases, where many TD-DFT approxima-

tions fail to correctly describe molecular systems, excited state

approximations based on SCF solutions offer an attractive alternative

for characterizing these cases. Different excited states may be

approximated by independent SCF solutions. Thus, the excitation

energy between two electronic states can be given by the energyHector H. Corzo and Ali Abou Taka contributed equally to this work.
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difference between two distinct SCF solutions. This approach for

computing excited state energies is often referred to as the Δ-SCF

approximation. KS-DFT Δ-SCF methods, unlike traditional TD-DFT

methods, have the advantage of accounting for orbital relaxation

corrections, which can be as important as the electron–electron

correlation correction.

Following a Δ-SCF strategy for the description of excited states, a

number of different approaches for reliably finding SCF solutions

describing excited states have appeared in the literature.30–39

Recently, the maximum overlap method (MOM) has received increas-

ing interest.40–42 MOM and the related initial maximum overlap

method (IMOM) have shown great success in converging solutions

that correspond to specific electronic excited states. In these method-

ologies, molecular orbital occupation in the SCF procedure is dictated

by a measure of overlap between the occupied orbitals of successive

SCF iterations (or with the initial guess), instead of the standard orbital

eigenvalue-based aufbau principle.

MOM-based approaches have been applied to core-level excita-

tion energies, valence excitations, and excited state geometries.40–42

Despite these successes, such methods can be quite sensitive to the

initial guess and the employed SCF optimization algorithm. Thus, the

likelihood of optimizing to the desired non-aufbau solution can be

highly user-dependent. Responding to this observation, multiple

groups have proposed alternative algorithms for driving SCF searches

to non-aufbau solutions. Two recent algorithms are the squared–

gradient minimization (SGM)43 and the state–targeted energy projec-

tion (STEP).44 In the SGM approach, the saddle-point optimization is

reframed as a minimization problem by optimizing the square of the

orbital gradient rather than the energy Lagrangian. This approach may

avoid variational collapse in the SCF procedure; however, the method

is a factor of 2–3 more computationally expensive than the traditional

SCF algorithm and may converge to solutions that do not correspond

to stationary points in SCF space. The second recent alternative,

STEP, is closely related to the Big Shift method previously developed

by Zerner and co-workers.39 STEP and Big Shift schemes decrease

occupied–virtual rotations during SCF iterations by introducing a

modified level shift to guide the molecular orbital (MO) optimization

toward a target solution.

A primary attraction of MOMs is the simplicity of the approach.

Indeed, most MOMs can be integrated into existing SCF programs with

only minor changes and then used directly with SCF gradient, hessian,

and property codes. Nevertheless, there are important and recognized

limitations with MOMs. Whereas the recent literature thoroughly dem-

onstrates the successful use of such models,40–43,45 a remaining challenge

is the documented dependence of SCF success on the definition of the

modified aufbau metric and the initial guess (vide infra).35,38,39,43,46–50

In this work, we examine the use of MOM and IMOM approaches

with a modified aufbau metric based on a projection operator describ-

ing a target density in the basis of the current MOs at each SCF itera-

tion. We refer to resulting variants as projection maximum overlap

method (PMOM) and projection initial maximum overlap method

(PIMOM). As shown below, the construction of a modified aufbau

metric for SCF calculations based on a projection framework rather

than an overlap picture yields an effective, robust, and conceptually

pleasing alternative to other metrics. As discussed below, we measure

SCF optimization success from a user-provided guess wave function

formulated as simple MO permutations on an initial ground state cal-

culation. Based on the PMOM/PIMOM formulation, we also provide

a convenient diagnostic metric, Nvirt , describing the agreement

between target and final converged states.

2 | METHODS

As mentioned above, using MOM-like approaches to drive SCF

solvers toward a solution resembling a target electronic structure has

been demonstrated in the literature for some time.33,35,39–42,47,51–58

In this section, we describe our construction of a projection-based

framework and a proposed metric for quantitatively assessing the

relationship between target and current electronic structures (either

specific iterations during the SCF procedure or the converged SCF

result). For the remainder of this section, indices employ a standard

convention.59 Specifically, Greek letters are used to denote atomic

orbital (AOs) and Roman letters denote MOs. MO. indices i, j,k,…

denote occupied MOs; a,b,c,… denote virtual MOs; and p,q, r,…

denote all (both occupied and virtual) MOs. In what follows, the MO

coefficients for the target and current electronic structures are given

by matrices Ctarget and C; the AO overlap matrix is given by matrix S.

This work focuses on two recent categories of maximum overlap

methods.40–42 The first category uses the occupied molecular orbitals

generated in each SCF cycle as the target state for the next SCF

cycle—referred to as MOM. The second approach uses the initial

guess, often prepared by a user from a previous calculation, as a pin-

ned target for all SCF cycles—referred to as IMOM. In both cases, the

SCF procedure is carried out using a modified aufbau principle where

a measure of overlap, or agreement, of each MO with the target state,

is used in lieu of the canonical MO Fock eigenvalues.

The modified aufbau rule used in MOM schemes can be defined

according to an ordered list of metrics, spf g. In general, this list aims

to quantify the overlap of each current MO with the occupied MO

sub-space of the target state. Figure 1 shows a flowchart demonstrat-

ing a standard MOM algorithm. As shown, the algorithm starts with

an initial guess that is typically provided by the user and often models

a desired electronic excited state. This initial guess provides the

atomic overlap and the molecular coefficients that are used to define

the projector that is used in each SCF iteration. After the projection

of the current SCF state the orbitals are re-arranged and the conver-

gence of the SCF is tested; the process repeats until convergence

is met.

A variety of spf g definitions have appeared in the literature. Three

such definitions include giving spf g as the sum of target–occupied–

MO/current–Mo overlap elements,42,57

sp ¼
X
i

itarget j pi¼
X
μν

X
itarget

Ctarget
μi SμνCνp , ð1Þ
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as the square root of the previous sum,41

sp ¼
X
i

hitargetjp
 !1=2

¼
X
μν

X
itarget

Ctarget
μi SμνCνp

0
@

1
A

1=2

, ð2Þ

and as the square-root of the sum of squared target occupied

MO/current MO overlap integrals.40

sp ¼
X
i

itargetjp� ��� ��2 !1=2

¼
X
μν

X
itarget

Ctarget
μi SμνCνp

� �22
4

3
5
1=2

: ð3Þ

The non-aufbau metric given by Equation (1) is based on identifying

MOs at each SCF cycle that exhibit the greatest overlap with the occu-

pied MOs comprising the target determinant. One issue that arises with

that straightforward expression is signed overlap values due to the arbi-

trary phase of Fock matrix eigenvectors. In principle, all metrics based

on such an overlap framework will be affected by the phase issue.

Indeed, Equation (3) essentially evaluated the sum of absolute overlaps,

which is a simple means for removing phase complications.

As an alternative construction for the modified aufbau metric, sp,

we began by asking which set of current Fock eigenvectors can be

used to construct a determinant with the largest projection onto the

target determinant. We refer to this approach as PMOM (or PIMOM

when the target is the initial determinant). The PMOM/PIMOM

scheme begins by defining the target system's density operator,

Ptarget, which projects a ket onto the occupied MO space of the target

system,

Ptarget ¼
X
i

j itargetihitarget j : ð4Þ

This projection operator can be represented in the basis of the

current MOs at each SCF cycle as

Ptargetpq ¼ pjPtargetjq� �¼X
i

pjitarget� �
itargetjq� �

: ð5Þ

Note that both occupied and virtual current-cycle SCF MOs are

necessary to provide a complete basis. When the SCF procedure is

carried out in the AO basis, Equation (5) is given by

F IGURE 1 Standard PMOM (left)/PIMOM (right) SCF algorithm flowcharts
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Ptargetpq ¼
X
i

X
μν

X
λσ

CμpSμλC
target
λi Ctarget

σi SσνCνq, ð6Þ

where C, Ctarget, and S are the current set of MO coefficients, target

system MO coefficients, and the AO overlap matrix, respectively.

Given that the MO basis is orthonormal, Ptargetpq can be used to give

the target density's gross Mulliken populations partitioned into the

current MO basis. With this in mind, the PMOM and PIMOM models

define the modified aufbau metric, sp, as

sp ¼
X
q

Ptargetpq : ð7Þ

The non-aufbau ordering using Equation (7) should be the same

as with Equation (3), though the metric expressions and resulting

values are not the same. Importantly, the derivation of Equation (7)

suggests a unique approach to derive a specific non-aufbau metric

among the multiple that have previously appeared in the literature.

This work demonstrates that the projection-based approach yields the

desired performance in the vast majority of cases, unlike alternative

overlap-based metrics (vide infra).

The projection based framework leading to Equation (7) also pro-

vides a convenient connection to population analysis. In particular,

the values evaluated in Equation (7) are the gross electron populations

of the target wave function in the basis of current Fock eigenvectors

using both Mulliken and Löwdin partitioning schemes (since the MO

basis is orthonormal). As a result, in cases where the current set of

occupied MOs results in the same electron density as the target

system,

nel ¼
X
i

si, ð8Þ

F IGURE 2 Molecules used in calculations on singly excited states

TABLE 1 Number of SCF iterations required to converge to the targeted singly excited state

Molecule Model chemistry Transition MOM IMOM PMOM PIMOM

Propenal B3LYP/Def2TZVP n! π� f f 15 15

HF/Def2TZVP n! π� f f 18 18

Propanamide B3LYP/Def2TZVP n! π� f f 19 19

HF/Def2TZVP n! π� f f 32 31

Tetrafluoroethene B3LYP/Def2TZVP π! 3s f f 11 11

HF/Def2TZVP f 18 16 16

Nitrobenzene B3LYP/Def2TZVP π! π� f f 29 21

HF/Def2TZVP π! π� f f v.c 44

Vanadium tetrachloride B3LYP/LANL2DZ 4T2 f f 19 19

HF/LANL2DZ 4T2 f f 13 13

Cobalt tetraiodide B3LYP/LANL2DZ 4T2 f f 13 13

HF/LANL2DZ 4T2 f f 16 16

Note: The failure of the SCF procedure to converge to either the target or any solution is indicated with the letter “f,” whereas variational collapse is

indicated by “v.c”.

TABLE 2 Values of the Nvirt metric for singly excited states

Molecule Model chemistry PMOM PIMOM

Propenal B3LYP/Def2TZVP 0.1 j 0.1 0.1 j 0.1
HF/Def2TZVP 0.4 j 0.1 0.4 j 0.0

Propanamide B3LYP/Def2TZVP 0.0 j 0.0 0.0 j 0.0
HF/Def2TZVP 0.6 j 0.1 0.6 j 0.1

Tetrachloroethane B3LYP/Def2TZVP 0.0 j 0.0 0.0 j 0.0
HF/Def2TZVP 0.0 j 0.0 0.0 j 0.0

Nitrobenzene B3LYP/Def2TZVP 0.0 j 0.0 0.0 j 0.0
HF/Def2TZVP 1.0 j 0.1 0.0 j 0.0

Vanadium tetrachloride B3LYP/Def2TZVP 0.2 j 0.0 0.2 j 0.0
HF/Def2TZVP 0.6 j 0.1 0.6 j 0.1

Cobalt tetraiodide B3LYP/Def2TZVP 0.0 j 0.3 0.0 j 0.3
HF/Def2TZVP 0.0 j 0.6 0.0 j 0.6

Note: Values corresponding to the α and β spin–orbital spaces are
separated by a vertical pipe.
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where nel is the number of electrons. This observation suggests a sim-

ple metric for quantifying agreement between the current and target

electron densities. Specifically, we define Nvirt as the projection of the

current virtual MOs onto the target system's occupied MOs,

Nvirt ¼ nel�
X
i

si ¼
X
a
sa, ð9Þ

where Nvirt is in units of electrons. We note the conceptual similarity

of our Nvirt metric with the excitation number described by Gill and

coworkers and promotion number by Head-Gordon et al.40,60,61 In all

cases, these different metrics use changes in electron density (in units

of electrons) to describe differences between wave functions

(or determinants).

3 | NUMERICAL TESTS

The MOM, IMOM, PMOM, and PIMOM methods have been

implemented in a local development version of the Gaussian suite of

electronic structure programs.62 To demonstrate and validate PMOM

and PIMOM we considered representative sets of singly excited

states, double excited states, and ionized states. For the purposes of

this study, MOM and IMOM are used to refer to the use of

Equation (1) for the non-aufbau metric. We also point out that the

performance of PMOM and PIMOM qualitatively mirrors results one

would obtain using Equation (3) as the non-aufbau metric.

In all reported results below, the SCF is converged using the

direct inversion in the iterative subspace (DIIS) algorithm.63 We note

that actual SCF convergence behavior may be sensitive to the specific

DIIS extrapolation scheme employed. The results given below used a

combination of commutator-based and energy-based DIIS.64 In pre-

liminary tests, we also carried out calculations using commutator and

F IGURE 3 Energy convergence to SCF solutions for the excited
state of nitrobenzene with MOM (red traces), IMOM (green traces),
PMOM (orange traces), and PIMOM (blue traces). Plot (A) shows the
results of all the approaches while (B) shows PMOM and PIMOM
only. The first 45 cycles are shown. MOM and IMOM did not
converge after 500 cycles, PMOM collapsed to the ground state after
27 cycles, and PIMOM converged after 44 cycles

F IGURE 4 Nα
virt metric at each SCF iteration for the excited state

of nitrobenzene with MOM (red traces), IMOM (green traces), PMOM
(orange traces), and PIMOM (blue traces). Plot (A) shows the results of
all the approaches while (B) shows PMOM and PIMOM only. The first
45 cycles are shown. MOM and IMOM did not converge after
500 cycles, PMOM collapsed to the ground state after 27 cycles, and
PIMOM converged after 44 cycles

F IGURE 5 Molecules used in calculations on doubly excited state
calculations
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energy DIIS separately. Those tests yielded similar convergence

behavior for all three schemes.

Converged electronic structures were characterized by visualiza-

tion of occupied MOs and using a modified form of the natural ioniza-

tion orbital (NIO) program by Hratchian and coworkers.65–67 Further

assessment was carried out by calculation of Δ-SCF results. Initial

guess MOs were selected based on the ground-state, Hartree–Fock

(HF)-optimized reference. Excited state guesses were generated by

obeying the excited state orbital-symmetry, i.e. a pair of the con-

verged ground state orbitals were permuted to yield the correct sym-

metry of the desired excited state.

The sub-sections below consider different categories of bench-

mark systems, as discussed above. The performance for each of the

MOM, IMOM, PMOM, and PIMOM approaches was assessed using

the number of SCF iterations needed to converge to the desired elec-

tronic structure. Calculations were considered failed if convergence

was not achieved within 500 iterations. The letter “f” is used below to

indicate SCF calculation that converged to an incorrect state or did

not converge within 500 iterations. Calculations that incorrectly con-

verged to the ground state solution were characterized as a variational

collapse result and are recorded as “v.c.” Importantly, we note that “f”
and “v.c.” results may be dependent on the initial guess wave function

and the details of the SCF optimization algorithm. In particular, we

note that more sophisticated approaches for preparing the initial

guess wave function may yield success for cases that have “f” or “v.
c.” results in this work.

3.1 | Single excitations

A set of representative molecules for the calculation of single excited

states, shown in Figure 2, were selected from the literature.46,68 All

computations were carried out using the Hartree–Fock and B3LYP

methods in combination with the Karlsruhe basis set Def2-TZVP (see

Table 1). When the various tested SCF driver techniques successfully

led to convergence to the desired electronic state, the resulting

Δ-SCF excitation energies were in good agreement with reference

values (see Table S1).

MOM failed to access any of the desired states in this test set.

IMOM also failed to locate the desired electronic structure in most

cases, though IMOM did converge to the correct structure for the

π!3s tetrafluoroethene excited state at the HF level. PMOM was

able to access the desired states for all molecules except nitrobenzene

at the HF level, where the calculation exhibited variational collapse to

the ground state solution. PIMOM, on the other hand, successfully led

to SCF solutions corresponding to all desired states with both model

chemistries. Though IMOM, PMOM, and PIMOM are all able to con-

verge to the same excited state for many of the included test mole-

cules, the number of SCF iterations needed to converge in each case

varied. In cases where different algorithms converge to the desired

excited state, the number of SCF iterations requited to converge to

the target state was relatively consistent.

The Nvirt value, Equation (9), is an additional metric to evaluate

converged states and is reported for all cases studied in Table 2 (see

Table S5). In the case of the MOM and IMOM methods, the value of

Nvirt is larger than one. Nvirt values greater than 1 represent multiple-

electron deviations from the user-defined target electronic structure.

In the case of the converged states using PMOM and PMOM, the

values of Nvirt are small. Such results support the notion that the

projection-based methods perform well at driving the SCF procedure

to the desired target electronic structure, even when the initial guess

wave function is constructed from straightforward orbital permuta-

tions of a related ground state calculation. Fractional Nvirt values may

be interpreted as the result of orbital relaxation as the target elec-

tronic structures were defined by an occupied-virtual permutation of

the ground state MO structure. As shown in Table 1, PMOM has a

v.c. result for nitrobenzene ground state. In this case, Nvirt ¼1 indicat-

ing that the user-provided target single electron excitation and ground

state differ by one occupied-to-virtual transition. For the included

TABLE 3 Number of SCF iterations
required to converge to the doubly
excited target state

Molecule Model chemistry State MOM IMOM PMOM PIMOM

Benzene BLYP/6-311G* 5 1Ag f f 9 9

HF/6-311G* 5 1Ag f f 10 10

Naphthalene BLYP/6-311G* 4 1Ag 9 f 9 9

HF/6-311G* 4 1Ag f f 11 11

Anthracene BLYP/6-311G* 2 1Ag f f 12 12

HF/6-311G* 2 1Ag f f 14 14

Note: The failure of the SCF procedure to converge to either the target or any solution is indicated with

the letter “f”.

TABLE 4 Values of the Nvirt metric for the computed doubly
excited states

Molecule Model chemistry PMOM PIMOM

Benzene BLYP/6-311G* 0.0 0.0

HF/6-311G* 0.0 0.0

Naphthalene BLYP/6-311G* 0.0 0.0

HF/6-311G* 0.0 0.0

Anthracene BLYP/6-311G* 0.0 0.0

HF/6-311G* 0.1 0.1
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vanadium and cobalt complexes, the 4T2 states have previously been

included as tests for the guided method by Li and co-workers.46 The

current work demonstrates that PMOM and PIMOM were also able

to reproduce the same results.

Figures 3 and 4 show the progress of the SCF procedure for the

case of the π! π� excitation of nitrobenzene. Energy as a function of

the SCF cycle number is shown in Figure 3; the metric Nvirt as a func-

tion of the SCF cycle number is presented in Figure 4. As shown in

Figure 3A, MOM and IMOM lead to large deviations from the current

energy early in the SCF procedure. The SCF energy in these cases

eventually diverges from the desired final state energy. This is also

reflected in the value of Nvirt. In both MOM and IMOM calculations,

Nvirt presents iterations with quite large values. These two observa-

tions suggest that MOM and IMOM, in the current implementation

and using the simple initial guess wave functions employed here, can

drift far from the desired solution.

Figures 3 and 4 also show results for PMOM and PIMOM calcula-

tions. The behavior of PMOM leads to variational collapse to the gro-

und state with a Nvirt value of 1.0. This value corresponds to the one

electron difference between the desired excited state and converged

ground state SCF solutions. Again, the Nvirt metric provides a useful

tool for assessing the behavior of such Δ-SCF methods. On the other

hand, PIMOM shows steady convergence to the correct excited state

solution. As expected, Nvirt for the final PIMOM converged wave

function is nearly zero.

3.2 | Double excitations

Figure 5 shows a set of arene examples included to study the use of

the tested schemes on double-excitation states. This set has been

used in earlier work reporting IMOM.40 We also include the 1σ2g !1σ2u
excitation in H2 using the augmented mcc-pV8Z basis set with an

additional 2f2g set of diffuse functions. In all cases, previously

reported energy values were reproduced (see, Tables S2 and S3).

Table 3 reports our results for the arene molecules. MOM was only

able to access one of the targeted states, whereas IMOM was unable

to converge to any of the targets. PMOM and PIMOM required the

same number of iterations to converge to the same energy values for

all states. The values of Nvirt for this set of molecules, shown in

Table 4, are again consistent with our interpretation of Nvirt (see

Table S6). For the converged states, the value of Nvirt is smaller than

1 and corresponds to orbital relaxation in the excited state.

3.3 | Ionizations

Ionized states were evaluated by computing the ionization energy

corresponding to electron detachment from orbitals other than that of

the HOMO of the initial state. Results for a representative set of mol-

ecules are presented in Table 5 and Figure 6, showing only PMOM

and PIMOM successfully accessed all ionized states and did so within

the same number of SCF iterations. MOM and IMOM only converged

TABLE 5 Number of SCF iterations
required to converge to the correct
ionized state

Molecule Model chemistry State MOM IMOM PMOM PIMOM

Propanone B3LYP/6-311G(d,p) 2b1 f f 13 13

HF/6-311G(d,p) 2b1 f f 16 16

Methanol B3LYP/6-311G(d,p) 7a0 f f 12 12

Hf/6-311G(d,p) 7a0 f f 18 18

Pyridine B3LYP/6-311G(d,p) 9b2 f f 14 14

Hf/6-311G(d,p) 9b2 f f 21 21

Formaldehyde B3LYP/6-311G(d,p) 1b1 10 10 10 10

HF/6-311G(d,p) 1b1 13 13 13 13

Note: The failure of the SCF procedure to converge to either the target or any solution is indicated with

the letter “f”.

F IGURE 6 Molecules used in calculations on ionized states

TABLE 6 Values of the Nvirt metric for the different ionized
excited states computed

Molecule Model chemistry PMOM PIMOM

Propanone B3LYP/6-311G(d,p) 0.0 j 0.1 0.0 j 0.1
HF/6-311G(d,p) 0.6 j 0.1 0.6 j 0.1

Methanol B3LYP/6-311G(d,p) 0.0 j 0.1 0.0 j 0.1
HF/6-311G(d,p) 0.0 j 0.6 0.0 j 0.6

Pyridine B3LYP/6-311G(d,p) 0.0 j 0.0 0.0 j 0.0
HF/6-311G(d,p) 0.1 j 0.2 0.1 j 0.2

Formaldehyde B3LYP/6-311G(d,p) 0.0 j 0.0 0.0 j 0.0
HF/6-311G(d,p) 0.0 j 0.1 0.0 j 0.1

Note: Values corresponding to the α and β spin–orbital spaces are
separated by a vertical pipe.
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to the desired ionized state for formaldehyde. In that particular case,

the number of SCF iterations was the same as for PMOM and

PIMOM. As in previous cases, the Nvirt values for the converged states

have values less than 1 (Table 6 and Table S7). The ionization energies

computed for the converged states are in good agreement with litera-

ture values (see Table S4).69

4 | CONCLUSIONS

This work described and assessed PMOM and PIMOM projection-

based maximum overlap methods. For the systems examined here,

PIMOM is a particularly robust member of the maximum overlap

method family. In particular, this work has demonstrated that PIMOM

can converge to intended electronic structure solutions using rela-

tively simple user-provided initial guess determinants as a target wave

function. Specifically, this report used permutations of ground state

occupied/virtual MO pairs as initial and target wave functions.

As shown above, PMOM and PIMOM both perform quite well.

Indeed, for the cases included here, PMOM and PIMOM are the most

consistent of the maximum overlap methods considered. In most

cases, PMOM and PIMOM require the same number of iterations to

converge. At first glance, this may suggest no apparent advantage

from using PIMOM versus PMOM. However, in cases such as nitro-

benzene, PMOM exhibits variational collapse and results in optimiza-

tion to the ground state, which is consistent with previous literature

showing that the initial guess wave function is generally a better tar-

get choice for maximum overlap methods than the evolving wave

function from the previous SCF cycle.40

The presented Nvirt metric provides a simple and conceptually

convenient measure of agreement between the desired target and the

current or final SCF results during a calculation employing a maximum

overlap method. In successful calculations, Nvirt values were close to

zero. For the cases in which a maximum overlap method failed to con-

verge to the desired solution, the Nvirt values comparing a target SCF

solution and the final result were greater than 1. And in cases where

the final SCF solution resulted from variational collapse, Nvirt is

roughly equal to the number of intended excited electrons. We envi-

sion using Nvirt during a maximum-overlap-method based calculation

to identify problematic SCF optimizations early in the iterative pro-

cess. One could envision incorporating such a metric with tools meant

to stabilize the optimization process, such as the recently reported

STEP technique.44

Although PIMOM has been shown to be a reliable method for

converging challenging SCF solutions, questions remain regarding the

resemblance between converged PIMOM SCF solutions and molecu-

lar electronic states and about limitations when describing wave func-

tions that may be properly multi-determinantal in nature. The

presented PIMOM formulation employs a simple form for the projec-

tion operator. In some cases, the Ptarget operator may not be com-

pactly presentable for a system's Hilbert space. In these systems, one

may find degenerate sub-spaces corresponding to a single eigenvalue

of the operator containing multiple (perhaps infinite) j iihi j-like

terms.70–74 For such cases, two-argument projection operators may

be more prudent for the formulation of the PIMOM algorithm. Work

exploring such questions is underway.
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