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ABSTRACT
The asymmetric Hubbard dimer is a model that allows for explicit expressions of the Hartree–Fock (HF) and Kohn–Sham (KS) states as
analytical functions of the external potential, Δv, and of the interaction strength, U. We use this unique circumstance to establish a rigorous
comparison between the individual contributions to the correlation energies stemming from the two theories in the {U,Δv} parameter space.
Within this analysis of the Hubbard dimer, we observe a change in the sign of the HF kinetic correlation energy, compare the indirect repulsion
energies, and derive an expression for the “traditional” correlation energy, i.e., the one that corrects the HF estimate, in a pure site-occupation
function theory spirit [Eq. (45)]. Next, we test the performances of the Liu–Burke and the Seidl–Perdew–Levy functionals, which model the
correlation energy based on its weak- and strong-interaction limit expansions and can be used for both the traditional and the KS correlation
energies. Our results show that, in the Hubbard dimer setting, they typically work better for the HF reference, despite having been originally
devised for KS. These conclusions are somewhat in line with prior assessments of these functionals on various chemical datasets. However, the
Hubbard dimer model allows us to show the extent of the error that may occur in using the strong-interaction ingredient for the KS reference
in place of the one for the HF reference, as has been carried out in most of the prior assessments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0097095

I. INTRODUCTION AND THEORETICAL BACKGROUND
Electronic structure problems in chemistry can be addressed

via an ever-increasing variety of methods, inviting both explicit and
implied comparisons. The various methods are sometimes classified
into the wavefunction-based category or the density functional the-
ory (DFT) one. A large part of this work is devoted to comparing
the “primal” wavefunction method, i.e., Hartree–Fock (HF), and the
most popular flavor of DFT, i.e., Kohn–Sham (KS).

These methods have been known for a very long time and,
in recent years, the number of works that combine them has been
increasing.1–4 However, a systematic comparison of the two, con-
trasting their formal properties and guiding new approaches that
combine them, is quite a hard task. A fair comparison, such as the
one done in Ref. 5 for three simple diatomic molecules, requires
the calculation of extremely accurate ab initio wavefunctions from
which the exact KS quantities [wavefunction, exchange-correlation

(XC) energy, etc.] may be constructed. In addition, this procedure is
system-specific: it has to be repeated for any system for which one
wishes to investigate how the two methods compare to one another,
complicating systematic studies. Furthermore, the effect of the basis
set used can hardly be identical in the HF and the KS states, intro-
ducing errors in the comparison. We bypass these disadvantages by
adopting a radically simple model system: the asymmetric Hubbard
dimer. In this model, both the HF and the KS states can be con-
structed analytically. A comparison of the exact correlation energies
stemming from the two theories within this model is carried out in
Sec. II.

A parallel focus of this work lies in testing certain approxi-
mations for the correlation energy. Despite the definition of the
correlation energy depending on the chosen method, our investi-
gation focuses on the performances of the Liu–Burke6 (LB) and
Seidl–Perdew–Levy7 (SPL) functionals that approximate this energy,
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interpolating between its weak- and strong-interaction limit expan-
sions. As such, these functionals can be adopted for different types
of correlation energies with the same rationale. The results of this
investigation are reported in Sec. III.

In the remainder of this section, we review the Hubbard dimer
model (Sec. I A), the HF and the KS theories (Sec. I B), and the
interpolations used (Sec. I C). Before going through each of these,
let us introduce the usual non-relativistic Hamiltonian expression
considered in electronic structure calculations,

Ĥ = T̂ + V̂ee + V̂ , (1)

where T̂ = −∑N
i
∇2

i
2 is the kinetic energy operator, N is the number

of particles in the system, V̂ee represents the Coulomb interaction
between all electron pairs, and V̂ = ∑N

i v(i) is the N-particle sum of
the external potential, (typically) given by the positive field of the
nuclei, felt by each electron. Let ∣Ψ⟩ be the wavefunction that solves
the Schrödinger equation defined by Ĥ with the lowest eigenvalue E.
The solution, ∣Ψ⟩, is notoriously hard to find, as it depends on the
spatial and spin variables of each particle, i.e., ∣Ψ⟩ = Ψ(x1, . . . , xN),
with xi = riσi being the spatial and spin coordinates. On the other
hand, the ground-state (GS) electron probability density, or just
(electron) density, is

n(r) ∶= ⟨Ψ∣n̂∣Ψ⟩, (2)

where n̂ = ∑N
i δ(ri − r) and the Dirac brackets ⟨⋅ ⋅ ⋅ ∣ ⋅ ⋅ ⋅⟩ stand for

∫ dx1 ⋅ ⋅ ⋅dxN , with ∫ dx = ∑σ∫ dr being a much simpler mathemati-
cal object.

Furthermore, if the ground state is unique, there is a bijective
mapping between the wavefunction Ψ and the external potential v,
and by virtue of Eq. (2), also between n and v, so that the expectation
value of a suitable operator Â evaluated on the GS wavefunction is
also a functional of the GS density,

A[n] = ⟨Ψ[n]∣Â∣Ψ[n]⟩. (3)

A. The asymmetric Hubbard dimer
The general N-site Hubbard model was originally studied to

describe the correlation effects in partially filled narrow energy
bands in solids.8–10 It has gradually been used in the most diverse
sceneries of physics and chemistry and is now often used as a play-
ground to test new computational methods or concepts.11–13 Its
two-site asymmetric version is relevant in the context of density
functional theory,14–16 or Site Occupation Function Theory (SOFT)
as is called in the lattice setting, and its offshoots (time-dependent
DFT,17 density embedding theory,18 ensemble DFT,19 and thermal
DFT20). Its simplicity allows a detailed, controlled, and not rarely
analytical exploration of the quantities of interest in these fields.

The two-site Hubbard model Hamiltonian reads as follows:

ℋ̂ = 𝒯 + �̂� +𝒱 , (4)

where

𝒯 = −t∑
σ
(â†

0σ â1σ + â†
1σ â0σ), (5)

�̂� = U∑
i=0,1

n̂i↑n̂i↓, (6)

𝒱 = ∑
i=0,1

vin̂i, (7)

where â †, â are the usual creation and annihilation operators,
σ = ↑, ↓ labels the spin of the particles, i = 0, 1 labels the two sites,
and n̂iσ = â†

iσ âiσ and n̂i = n̂iσ + n̂iσ (with σ being the spin opposite
to σ) are the occupation operators. The parameters appearing in
the Hamiltonian, namely, t, U, and {vi}, determine the aptitude of
the particles to hop on the other site, the strength of the repulsion
between particles, and their attraction to each site, respectively. In
this sense, each term in the lattice Hamiltonian mimics the action of
each term in the electronic Hamiltonian [Eq. (1)].

The eigenstates corresponding to Eq. (4) are fully determined
by the reduced variables u = U

2 t and δv = Δv
2 t , with Δv = v1 − v0.

Thus, we set t = 1/2 throughout the paper, as is customary.14 Fur-
thermore, we constrain the expectation value of the occupation
operators on each site, ni, to add up to two (i.e., n0 + n1 = 2), and
we consider only the states with Sz = 0. Therefore, the Fock space
reduces to three-dimensions and can be represented by the basis
∣0↑ 0↓⟩, ∣1↑ 1↓⟩ and the antisymmetric combination of singly occu-
pied sites 1√

2
(∣0↑1↓⟩ − ∣0↓1↑⟩). The associated Schrödinger equation

can be solved analytically by finding the roots of a cubic polyno-
mial, and all the quantities of interest can be compactly expressed
by trigonometric formulas. Note that, although we can generally
express how the occupation difference Δn = n1 − n0 depends on
U and Δv, the inverse mapping (i.e., Δn→ Δv) is not analytical.

We stress two fundamental features of ℋ̂, which set it apart
from the electronic Hamiltonian of Eq. (1): the first one is that
the lack of a (second-order) derivative with respect to the particle
space variable significantly alters the meaning of “kinetic energy”
in the quantum context (no Heisenberg principle, wave-particle
duality, and so on). In fact, the expectation value of the hopping
operator is negative. The second is that the two-body interaction
in the lattice model is defined only between particles with oppo-
site spin, a relevant difference from electrons, which interact with
one another regardless of their spin. Therefore, the mean-field
term [Eq. (14) below] in the Hubbard model is free of the self-
interaction error. Similarly, the exchange energy [Eq. (15) below],
which specifically accounts for the interaction among particles of
the same spin, is exactly zero. Correspondingly, in this work, we
choose to compare the two theories, HF and KS, only in their
correlation energy contributions. See also Sec. II A for a more
detailed discussion of these choices. To set the stage for the com-
parison between the two theories, we review them in general terms
in Sec. I B.

B. Hartree–Fock and Kohn–Sham methods
According to the Hartree–Fock method, the expectation value

of the Hamiltonian in Eq. (1) is minimized in the space of
Slater determinants, Φ ∶= ∑P(−1)PψP(1)(x1) ⋅ ⋅ ⋅ψP(N)(xN), where
the ψn(x) are single-particle wavefunctions and the spatial and spin
coordinates are considered separable, i.e., ψn(x) ≡ ϕn(r)sn(σ), while
the index P lists all possible permutations. Its ground state is then
given by

∣ΦHF
⟩ = argminΦ⟨Φ∣Ĥ∣Φ⟩. (8)
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The corresponding ground-state density, nHF
(r) = ∑σ∑

N
i ∣ψ

HF
i (x)∣2,

typically differs from the interacting one [Eq. (2)]. The HF
approximation to the GS energy is

EHF
∶= ⟨ΦHF

∣Ĥ∣ΦHF
⟩, (9)

and, by virtue of the variational principle, EHF
≥ E. Their difference

is usually referred to as simply the “correlation energy,” Ec; however,
we shall label it the Hartree–Fock correlation energy, EHF

c , to dis-
tinguish it from the KS one. It is defined as the difference between
the GS energy and its HF approximation, EHF, and consists of the
following individual contributions:

EHF
c = THF

c +UHF
c + VHF

c , (10)

where

THF
c ∶= T[n] − TSD

[{ψHF
i }], (11)

UHF
c ∶= Vee[n] −UH[nHF

] − Ex[{ψHF
i }], (12)

VHF
c ∶= V[n] − V[nHF

]. (13)

Here, the first terms on the right-hand side of Eqs. (11)–(13) are
applications of Eq. (3), while TSD

[{ψi}] =
1
2∑

N
i ∫ ∣∇rψi(x)∣2dx is

the kinetic energy as evaluated on a Slater determinant,

UH[n] ∶=
1
2∬

n(r)n(r′)
∣r − r′∣

drdr′ (14)

is the mean field repulsion energy, and

Ex[{ψi}] = −
1
2

N

∑
i,j
∬

ψ∗i (x)ψ∗j (x)ψi(x′)ψj(x′)
∣r − r′∣

dxdx′ (15)

is the exchange energy that is derived by evaluating the interac-
tion operator on a Slater determinant and subtracting the mean-field
term. Moreover, the external potential energy functional is a simple
explicit functional of the density, V[n] ∶= ∫ v(r)n(r)dr.

In the Kohn–Sham formulation of DFT, the full Hamiltonian
is set aside and only the kinetic energy operator is minimized over
all antisymmetric N-particle wavefunctions. However, the mini-
mization is performed under the constraint of a fixed density. The
resulting density functional is known as the Kohn–Sham kinetic
energy functional,

Ts[n] ∶= min
Ψ→n
⟨Ψ∣T̂∣Ψ⟩. (16)

The minimizing wavefunction is expected to be a Slater Determi-
nant, as there are no two-body operators entering the minimization,
although there are cases in which the single Slater determinant
description cannot deliver the prescribed density.21–23 If we neglect
such cases, then Ts[n] ≡ TSD

[{ψKS
i }], where the KS orbitals {ψKS

i }

are the one-particle functions cast in the KS Slater determinant,
ΦKS, which is the minimizer of the search on the right-hand side
of Eq. (16). The KS orbitals are clearly functionals of the den-
sity but in an implicit and highly non-trivial way. Conversely, the
interacting density is easily written in terms of the KS orbitals as
n(r) = ∑σ∑

N
i ∣ψ

KS
i (x)∣2. The correlation energy according to KS-

DFT, EKS
c , is given by

EKS
c = TKS

c +UKS
c , (17)

where TKS
c and UKS

c look formally identical to Eqs. (11) and (12),
respectively, with the “non-interacting” pieces having the KS orbitals
{ψKS

i } and the interacting density as input rather than the HF
quantities. The missing external potential contribution in Eq. (17)
compared to Eq. (10) is a result of the KS density being, by con-
struction, equal to the interacting one. This is at the root of KS-DFT
being an exact treatment rather than an approximation strategy
like Hartree–Fock. The matching between the density of the “non-
interacting” auxiliary system and that of the interacting target system
is enforced by means of an effective external potential, called the KS
potential, vs. To see the relation between said potential and Eq. (17),
one may decompose it into

vs = v + vH + vxc, (18)

where v is the external potential of the target problem [Eq. (1)],
vH is the Hartree potential defined as the functional derivative of
UH[n], i.e., vH[n](r) = ∫

n(r′)
∣r−r′ ∣dr′, and vxc is the so-called exchange-

correlation (XC) potential and corresponds to the functional
derivative of the XC energy

vxc[n0] =
δ EKS

xc [n]
δn

∣

n=n0

, (19)

with EKS
xc [n] = EKS

c [n] + Ex[{ψKS
i }[n]].

In general, as EKS
xc is not known, this term has to be approxi-

mated in actual KS-DFT calculations. Although we have access to
the numerically exact quantity for our Hubbard dimer, we present
one possible route to build approximations for it in Sec. I C.

C. Approximations from the adiabatic connection
framework

A quite powerful and long-established tool to construct approx-
imation for the XC energy in KS-DFT is represented by the density-
fixed adiabatic connection formalism.24–27 According to this formal-
ism, a parameter λ is used to tune the strength of the interaction
operator in the Hamiltonian (1) while keeping the density fixed,
under the assumption that the density is v-representable for all λ,
i.e.,

ĤKS
λ = T̂ + λV̂ee + V̂ λ, (20)

where V̂ λ
= ∑

N
i vλ(ri) and vλ is the Lagrange multiplier that keeps

the density fixed at each λ. One can then show that

EKS
xc [n] = ∫

1

0
WKS

λ [n]dλ, (21)

with the AC integrand defined as

WKS
λ [n] ∶= ⟨Ψ

KS
λ [n]∣V̂ee∣ΨKS

λ [n]⟩ −UH[n], (22)

and with ΨKS
λ being the ground state of the λ-dependent Hamilto-

nian (20) at each λ.
The exact behavior of WKS

λ is known locally in the two limits
λ→ 028,29 and λ→∞,30,31

WKS
λ→0[n] = Ex[{ψKS

i [n]}] +
∞
∑
n=2

n EGLn
c λn−1, (23)
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WKS
λ→∞[n] =WKS

∞ [n] +O(λ−
1
2 ), (24)

where EGLn
c are the nth-order Görling–Levy (GL) correlation energy

coefficients28,29 and WKS
∞ is the minimal repulsion energy in a given

density removed of its mean-field part.30,32

Models for the KS-DFT XC energy based on interpolation
between the weak- and the strong-interaction expansions, Eqs. (23)
and (24), respectively, are called Adiabatic Connection Interaction
Interpolations (ACIIs) or Adiabatic Connection Methods (ACMs).
In fact, these approximations, developed within KS-DFT, have been
successfully used with HF ingredients as a correction to the HF
energy.33–36 Such practice began from the simple heuristic obser-
vation that using ACMs on HF ingredients gave consistently better
results than using them on KS ones.33

While adaptations of the adiabatic connection approach to
wavefunction methods had already begun to appear (see Ref. 37 and
references therein), the key factor needed to justify the use of ACMs
with different reference states was the boundedness of the leading
coefficient in the strong-interaction expansion of the corresponding
AC integrand. In the case of the AC with the HF state as reference,
such boundedness was shown only more recently.38

Within this other adiabatic connection framework, the
λ-dependent Hamiltonian reads

ĤHF
λ = T̂ + V̂HF + V̂ + λ(V̂ee − V̂HF), (25)

where V̂HF = ∑
N
i,j(Ĵ

HF
j (xi) − K̂HF

j (xi)),

ĴHF
i (x) = ∫

∣ψHF
i (x)∣2

∣r − r′∣
dx′, (26)

and

K̂HF
i (x)ϕ(x) = ψ

HF
i (x)∫

ψHF∗
i (x′) ϕ(x′)
∣r − r′∣

dx′. (27)

Similar to the DFT case, one can show that

EHF
c = ∫

1

0
WHF

λ dλ, (28)

with the adiabatic connection integrand, WHF
λ , defined as

WHF
λ ∶= ⟨Ψ

HF
λ ∣V̂ee − V̂HF∣ΨHF

λ ⟩ + cHF
0 [n

HF
], (29)

and cHF
0 [n

HF
] = UH[nHF

] + Ex[{ψHF
i }]. Note that we have decided to

shift WHF
λ such that it integrates to the correlation energy alone. As a

result of this choice, the exchange term does not appear in Eq. (30),
in contrast with the analogous small-λ expansion [Eq. (23)] of the
DFT AC integrand.

The small- and large-λ expansions of WHF
λ give

WHF
λ→0 =

∞
∑
n=2

n EMPn
c λn−1, (30)

WHF
λ→∞ =WHF

∞ +O(λ−
1
2 ), (31)

where EMPn
c are the nth-order Møller–Plesset (MP) correlation

coefficients and

WHF
∞ = Eel[n

HF
] + Ex[{ψHF

i }], (32)

with

Eel[n] ≡ min
{r1 ,...,rN}

⎧⎪⎪
⎨
⎪⎪⎩

N

∑
i,j>i

1
∣ri − rj∣

−
N

∑
i=1

vH(ri; [n]) +UH[n]
⎫⎪⎪
⎬
⎪⎪⎭

(33)

being the minimum total electrostatic energy of N equal classical
point charges (−e) in a positive background with continuous charge
density (+e)n(r).38

The ACMs strategy of interpolating between the weak- and the
strong-interaction expansions of the desired AC integrand has the
major merit of providing an all-order resummation of the perturba-
tion series coefficients by encompassing also the strong-interaction
information. This avoids difficulties such as slowly convergent
or divergent series (see, e.g., a discussion of the shortcomings
associated with MP theory in quantum chemistry in Ref. 39).

In this work, we test two ACMs that depend on three ingre-
dients: Ex; EPT2

c , where “PT” stands for “Perturbation Theory”; and
W∞. Note that, while the ingredient Ex is formally exactly the same
regardless of the reference used (HF or KS) and only the input quan-
tities change (i.e., HF or KS orbitals), the ingredients EPT2

c and W∞
correspond, respectively, to EMP2

c and WHF
∞ for the HF reference, and

EGL2
c and WKS

∞ for the KS reference.
Specifically, the functionals considered in this work are the

Liu–Burke (LB),6

ELB
c = −

W̃2
∞(
√

20W′

0
W̃∞

+ 25 − 5)

4W′
0

−
5W̃2

∞
8W′

0 + 10W̃∞
+ W̃∞, (34)

and the Seidl–Perdew–Levy (SPL),7

ESPL
c = W̃∞ −

W̃2
∞(
√

1 + 2W′

0
W̃∞

− 1)

W′
0

, (35)

where, in both equations, we have used W′
0 = 2 EPT2

c and W̃∞
=W∞ − Ex.

II. COMPARISON BETWEEN EHF
c AND EKS

c

Both the HF and the KS states that correspond to the interact-
ing problem introduced in Eq. (4) can be constructed analytically.14

This quite rare (if not unique) circumstance allows us to establish
a detailed comparison between the two theories (see Figs. 3, 5, 6,
and 7). Moreover, we discuss both these methods from a site-
occupation function theory standpoint [see Figs. 1, 2, and 8 and
Eq. (45)]. This is quite usual for the KS theory but rather uncommon
for the HF. Before showing the results for the HF and KS correla-
tion energies and their individual contributions (Sec. II B), we review
such methods as applied to the Hubbard dimer.

A. Mean-field solutions: An overview
In the non-interacting case, when U ≡ 0 in Eq. (4), the solution

to the Schrödinger equation is particularly simple. The GS occupa-
tion, which can be constructed from the non-interacting solution, is
analytically invertible in terms of the potential and reads

Δv = −
Δn

√
4 − Δn2

. (36)
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FIG. 1. Schematic of the occupation and external potential functions considered in
this work. The green arrows mean that the function in question is known ana-
lytically. For example, the function Δn(ΔnHF

)—represented by the uppermost
arrow—is known analytically and is plotted in the bottom panel of Fig. 2. By
contrast, its inverse, ΔnHF

(Δn), could not be expressed in closed form.

In the Hubbard model community, this case is referred to as the
“tight-binding” problem. As this case is relevant for the applica-
tion of the KS method, and to distinguish the external potential
(difference) pertaining to the target interacting problem from its
non-interacting effective mapping, we relabel the external potential
found from Eq. (36) as “Δvs” (see also the right edge of Fig. 1).

Consider now the HF Hamiltonian for the Hubbard dimer:

ℋ̂ HF
= 𝒯 + ∑

i=0,1
∑
σ

UnHF
iσ n̂iσ + ∑

i=0,1
vin̂i. (37)

In contrast to Eq. (4), in Eq. (37), there is no interaction term and
the repulsion is taken into account in a mean field fashion by the
central term, UnHF

iσ . On each site, the occupation with spin σ feels
the repulsion generated by the spin-σ occupation of the same site.
We reiterate that, contrary to the usual continuum setting, here there
is no repulsion between particles of the same spin. In Eq. (37), this
central term is reported as converged to the stationary point at which
the mean field is generated by the HF occupation.

Furthermore, if we require that the spin up and spin down
occupations are equal, we can substitute nHF

iσ = nHF
iσ =

nHF
i
2 in Eq. (37),

obtaining the corresponding restricted Hartree–Fock (RHF)
Hamiltonian,

ℋ̂ RHF
= 𝒯 + ˆ̃𝒱 , (38)

with

ˆ̃𝒱 = ∑
i=0,1

ṽin̂i, (39)

ṽi = vi +
U
2

nHF
i . (40)

FIG. 2. Upper panel: site occupation differences for the interacting (solid) and the
HF (dashed) systems as a function of the external potential difference, Δv, for
U = 0.2, 1, 2, 5, and 10. Lower panel: interacting site occupation difference, Δn,
as a function of the HF one, ΔnHF, for U = 0.2, 1, 2, 5, and10.

In the following, we will always consider the RHF occupation
resulting from Eqs. (38)–(40), referring to it as simply “HF.”

Note that, while the eigenvectors of Eq. (4) do not depend
on the individual values, vi, of the external potential but only on
their difference, Δv, the energy does depend on the individual vi.
One can also express the energy as a function of Δv and a con-
stant c that represents the gauge choice, c = v0 + v1, and is typically
set to zero. However, setting v0 + v1 = 0 forces ṽi of Eq. (40) to give
ṽ0 + ṽ1 = U (since the nHF

0 + nHF
1 = 2). From Eq. (38), consequently,

we can reconstruct the external potential as a function of the HF
occupation by altering Eq. (36) to include a mean field repulsion
term,

Δv = −
U
2
ΔnHF

−
ΔnHF

√

4 − (ΔnHF)
2

. (41)

The above function is also invertible and ΔnHF can be expressed
as a function of {U,Δv}. We avoid reporting it here, but it can
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be found together with the other formulas and plots given in
this work in a supporting notebook available for download at
https://notebookarchive.org/2022-06-1ft9zde.

We now address the adaptation of the mean-field term
[Eq. (14)] and of the exchange [Eq. (15)] in the Hubbard dimer set-
ting as follows: first, we define the mean-field repulsion energy in
this context as follows:

UH(Δn) ∶=
U
2
(1 + (

Δn
2
)

2
). (42)

Equation (42) for the mean-field energy differs from how usually
this term is defined within the Hubbard dimer (see, e.g., Ref. 14).
However, given that in the operator �̂� , as defined in Eq. (6), there
is no interaction between particles of the same spin, it seems to us
that defining the mean field term as proportional to the sum of the
squares of half the site occupation on each site (recalling that we
are dealing with a spin-compensated system) is more appropriate.
Correspondingly, the exchange contribution in the Hubbard dimer
setting for a two-electron spin singlet vanishes.

To conclude this section, in Fig. 1, we visually summarize all the
analytical pathways that connect the target interacting state to the
two different “non-interacting” reference states. For each reference
state, we can construct the external potential from its correspond-
ing GS occupation and vice versa (as sketched in the left and right
sides of the picture), whereas the connection between the two refer-
ence states works only in the direction from left to right and not the
other way around. Indeed, if we could either construct the external
potential of the interacting system from the knowledge of the KS one
(bottom arrow of the picture) or construct the KS occupation from
the knowledge of the HF one (upper arrow of the picture), we would
find the external potential of the interacting system as a function of
its GS occupation. As already mentioned, this problem has no ana-
lytical solution even in this extremely gaunt model system, except in
the symmetric case, i.e., Δv = 0, or in the limit where the interaction
energy dominates over the kinetic/hopping one, i.e., U →∞.

In Fig. 2, we plot the functions Δn and ΔnHF along the exter-
nal potential difference in the upper panel and against each other in
the bottom panel. When U is small, e.g., U = 0.2, the two occupa-
tions differ very slightly, while their difference increases for larger
U, as expected. The function Δn vs Δv, shown in the upper panel,
can be quite flat for extremely large portions of its domain; on the
other hand, the function Δn vs ΔnHF, on the bottom panel, appears
to be much gentler, at least for intermediate values of U (becoming
non-analytical for U →∞). Thus, from a numerical point of view,
it is, in general, much more convenient to invert this latter relation
and then use the function Δv vs ΔnHF rather than directly invert-
ing the function Δv vs Δn (diagonal of Fig. 1). We see that the two
site occupations become equal in the symmetric limit, Δv = 0, and
asymptotically (i.e., forΔv → ±∞), where in both cases, the interplay
between U and Δv vanishes.

B. Individual contributions to the correlation energies
In a spirit similar to that of Ref. 5, in this section, we com-

pare the individual contributions to the HF and the KS correlation
energies with one another. We begin by comparing kinetic cor-
relation energies when we fix the external potential. By definition

[Eq. (16)], Ts is the minimal kinetic energy for a given density. How-
ever, as mentioned previously, when we solve a quantum problem
for a given external potential, nHF

≠ n. It then becomes interest-
ing to compare the correlation kinetic energy contribution in the
two theories, THF

c and TKS
c [Eq. (11)] as a function of the external

potential difference, Δv. This is done in Fig. 3 for different U val-
ues. The dashed curve corresponds to SD = HF, while the solid one
corresponds to KS (as is the case in all the following figures in this

section). Note that TSD
[Δn] = −

√

1 − (Δn
2 )

2 for any non-interacting
reference state, so that actually TKS

≡ THF as a function of a given
site occupation. However, if we consider the HF or the KS kinetic
energy for a particular external potential, we see that the inequality
TKS
≤ THF still holds, becoming an equality when the interacting and

the HF site occupations become equal (Δv = 0 and Δv →∞). Fur-
thermore, we observe that for each U there is a turning point in ∣Δv∣
at which THF

c ≡ 0 and past which the HF hopping energy is higher
than the interacting one, showing first evidence, to our knowledge,
of THF

c < 0. To better understand this result, let us go back to the
hopping operator �̂� in Eq. (5). By definition, �̂� favors delocaliza-
tion of each spin particle over the two sites. In other words, while �̂�
tries to localize both particles on the site of lower potential energy
and �̂� tries to localize particles of different spin each on one site,
�̂� favors the mixture of these states. In this sense, it is going against
the action of both �̂� and �̂� . Therefore, the expectation value of �̂�
is not monotonic in ∣Δv∣ and reaches its minimum when the two
other competitors balance out, roughly at ∣Δv∣ ≈ U. On the other
hand, in the case of the HF Hamiltonian, the only competing oper-
ator is ˆ̃𝒱 . The effective external potential, Δṽ = Δv + U

2 ΔnHF, goes
monotonically with Δv. In particular, we find that when ∣Δv∣ > U,
Δṽ ∼ Δv + (signΔv)U, while when ∣Δv∣ < U, Δṽ ∼ Δv

U (for large
enough U). In Fig. 4, Δṽ is plotted for U = 5, demonstrating these
shifts in different regimes. Consequently, the HF kinetic energy is
monotonic in ∣Δv∣ and its minimum is reached for Δv = 0. Further-
more, the two kinetic energies have comparable magnitude in the
Hubbard dimer, which, combined with their contrasting behavior,
results in their crossing around ∣Δv∣ ≈ U.

FIG. 3. Correlation kinetic energy contribution TSD
c [Eq. (11)] for the Hubbard dimer

as a function of Δv and for U = 0.2, 1, 2, 5, and 10. The dashed curve corresponds
to SD = HF, while the solid one corresponds to KS.
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FIG. 4. Effective external potential of the HF Hamiltonian, Δṽ (blue curve), con-
trasted with [Δv + (signΔv)U] (orange and green curves) and Δv

U
(red), for

U = 5.

Moving on to comparison of UHF
c and UKS

c [Eq. (12)] in Fig. 5,
we see that the discrepancy of this energy contribution is system-
atically larger (in magnitude) in the HF reference state than in the
KS one. Note that also UHF

c contains the correction coming from

the Hartree term, UHF
H,c := U

2 ((
Δn
2 )

2
− (ΔnHF

2 )
2
). Quite interestingly,

we find that the indirect Coulomb correlation energy defined as
USD

ind,c ∶= USD
c −USD

H,c is exactly the same in the two reference states,
meaning that UHF

ind,c ≡ UKS
c . Therefore, the discrepancy observable in

Fig. 5 between the two methods is entirely due to the term UHF
H,c,

the mean field correction for the HF site occupation being differ-
ent than the interacting one. Because the comparison is made with
fixed external potential, and the HF and KS site occupations typically

FIG. 5. Correlation Coulomb energy contribution USD
c [Eq. (12)] for the Hubbard

dimer as a function of Δv and for U = 0.2, 1, 2, 5, and 10. The dashed curve
corresponds to SD = HF, while the solid one corresponds to KS.

FIG. 6. Correlation potential energy contribution VHF
c [Eq. (13)] for the Hubbard

dimer as a function of Δv and for U = 0.2, 1, 2, 5, and 10. This contribution is
exactly zero for the KS reference.

differ (see Fig. 2), this means, in turn, that the dependence of USD
ind,c

on the site occupation in the two treatments is different.
Finally, we examine how EHF

c and EKS
c compare to one another.

Both correlation energies account for the difference between the
expectation value of the Hamiltonian operator in the GS and that
in the single SD reference state, i.e.,

ESD
c = E − ⟨ΦSD

∣Ĥ∣ΦSD
⟩, (43)

with SD = HF, KS. By virtue of definition (8) and of the variational
principle, it is immediate to see that EKS

c ≤ EHF
c . However, as demon-

strated above, both UHF
c and THF

c are less than or equal to their KS
counterparts, meaning that THF

c +UHF
c ≤ TKS

c +UKS
c . We conclude

that it is the term VHF
c of Eq. (13), shown in Fig. 6, that cancels out

a significant portion of the error residing in the other contributions
(THF

c and UHF
c ). Thus, adding up all the terms, we indeed retrieve

the inequality EKS
c ≤ EHF

c , holding for a given external potential, as
seen in Fig. 7. In passing, we note that the maximum of both ∣UHF

c ∣

and VHF
c is found near ∣Δv∣ ≈ U. This can be explained by the fact

that both terms are related to how much the HF site occupation dif-
fers from the interacting one (in the case of UHF

c , this is related to
the term UHF

H,c, as discussed). In fact, as can be deduced from the top

FIG. 7. Total correlation energies EHF
c (dashed) and EKS

c (solid), respectively,
Eqs. (10) and (17), for the Hubbard dimer as a function of Δv, for U = 0.2, 1, 2, 5,
and 10.
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panel of Fig. 2, the biggest error in the HF site occupation occurs for
values of ∣Δv∣ lower than, but nearing, U.

Questions remain about how the results illustrated so far for the
Hubbard dimer transfer to Coulomb quantum systems in the spa-
tial continuum. Due to the profound difference in nature between
the hopping operator and the quantum kinetic energy operator,
it is hard to say whether there exist more realistic quantum sys-
tems with negative THF

c . In the case of the usual quantum kinetic
energy operator, a negative THF

c means that the kinetic energy of
particles interacting via an effective mean field is higher than the
one of electrons interacting coulombically. However, typically, we
expect interacting particles to be more sensitive than non-interacting
ones to any change in their coordinates, thus being described by
a wavefunction whose variation in space is more pronounced and,
consequently, has higher kinetic energy. However, in principle, we
do not exclude that it might be possible to find rather patholog-
ical examples where such an expectation would be contradicted,
although none has been found so far in studies focused strictly on
cases in which the RHF solution is the lowest-energy HF state.40 In
Ref. 5, the authors study the individual contributions to the correla-
tion energies within the RHF and the KS theories for the molecules
Li2, N2, and F2 at equilibrium or larger bond distances. There, the
case where THF

c < TKS
c (as in Fig. 3) is never encountered. In other

words, in their cases, the HF kinetic energy is typically lower than
the KS one for a given external potential and, consequently, lower
than the interacting one. However, they also observe that the HF
kinetic energy is typically much more sensitive to the geometry than
the KS one.

Concerning the remaining contributions, USD
c and VHF

c , our
results are of somewhat general validity: the HF state tends to
“overstabilize” the energy by relaxing the density, but the individual
contributions to the energy are less in line with the exact ones than
their KS counterparts. This is in agreement with what is observed in
Ref. 5: UHF

H,c and VHF
c have similar orders of magnitude (with this lat-

ter being typically larger, up to a factor of four) and are opposite in
sign, while the difference between UHF

c,ind and UKS
c is between one and

three orders of magnitudes smaller (in the Hubbard dimer, as said,
this difference is exactly zero). The only caveat is that, in non-lattice
systems, the HF density is typically more diffuse. This means that
VHF

c < 0, as the HF density is less peaked around the nuclei where
the nuclear field is more attractive, and that UHF

H,c > 0, as the HF mean
field repulsion is milder. In our model, a more diffuse density trans-
lates in a larger site-occupation difference, i.e., ∣ΔnHF

∣ ≥ ∣Δn∣ (see
Fig. 2), resulting in those contributions having the reverse sign, i.e.,
VHF

c > 0 and Uc,H < 0.
We now want to consider a scenario that can virtually be real-

ized only within the Hubbard dimer setting. We ask ourselves how
the HF and the KS correlation energy functions compare to one
another if we match the two site-occupation differences. In this case,
as visible in Fig. 8, the opposite inequality appears to hold, i.e.,

EKS
c (U,Δn)∣Δn≡ΔnHF ≥ EHF

c (U,ΔnHF
). (44)

Note that the function EKS
c (U,Δn) is not known analyti-

cally and it has been obtained from numerical inversion. On the
other hand, the expression for EHF

c can be found analytically and
reads

FIG. 8. Total correlation energies EHF
c (dashed) and EKS

c (solid)—Eqs. (10)
and (17), respectively—for the Hubbard dimer as a function of the site occupation
ΔnHF and Δn (set equal), for U = 0.2, 1, 2, 5, and 10.

EHF
c (U, x)

=
1

24
(−16 f (U, x) sin(

1
6
(2 cos−1

(−
U
2

g(U, x)
f (U, x)3 ) + π))

+ 3Ux2
+ 4U +

48
√

4 − x2
), (45)

with

f (U, x) =

¿
Á
ÁÀ3 +U2 + 3x2(

U
2
+

1
√

4 − x2
)

2

,

g(U, x) =
⎛

⎝
9,+, 2U2

− 18x2
(

U
2
+

1
√

4 − x2
)

2
⎞

⎠
,

and x = ΔnHF. Its small-U expansion gives us the Møller–Plesset
perturbation41 series coefficients,

EMP2
c (U, x) = −

1
256

U2
(4 − x2

)
5/2

, (46)

EMP3
c (U, x) = −

U3x2
(x2
− 4)

3

2048
, (47)

. . .

(where we have reported only the first two, as the coefficients grow
in complexity).

Comparison of Eqs. (46) and (47) with the Görling–Levy28,29

series expansion coefficients, EGL2
c and EGL3

c , reported in Eqs. (88)
and (89) of Ref. 14, shows that these coefficients are formally identi-
cal in the two perturbation treatments for the Hubbard dimer. The
only difference is that, here, they are functions of the HF site occu-
pation, x = ΔnHF, whereas in the DFT case, they are functions of
the interacting site occupation. [Note also that each of the terms
in the energy expressions of Eqs. (45)–(47) depends on the square
of the site-occupation difference, rather than on the site-occupation
difference itself.] Concerning the second-order coefficients, their
formal equivalence is due to the formal equivalence of the sum of the
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Hartree and exchange terms in the two theories. As for the equiva-
lence between the third-order coefficients, this may simply be due
to the lack of same-spin interaction in the model. However, similar
investigations in other models are needed to clarify its influence.

To summarize, in this section, we have calculated the exact total
and partial correlation energies corresponding to the HF or the KS
reference states, comparing the resulting pairs. In Sec. III, we shall
focus on approximate expressions for the correlation energy, which
can be used within both theories.

III. PERFORMANCE OF THE LB AND SPL
FUNCTIONALS FOR THE HUBBARD DIMER

We previously introduced the practice of adopting density
functional approximations developed for the correlation energy in
KS-DFT and using them with HF ingredients as a correction to the
HF energy. In particular, functionals coming from the so-called adi-
abatic connection framework, ACMs, have been successfully used
in this manner.33–36 As said, these formulas interpolate between
the weak- and strong-interaction expansions of the adiabatic con-
nection integrand, WSD

λ . This function(al) integrates to the desired
correlation energy between the two extremes, zero and one, of the
interaction strength parameter λ, i.e., ∫

1
0 WSD

λ dλ = ESD
c (with SD

= HF, KS). A more detailed treatment of the MP adiabatic con-
nection integrand, WHF

λ , for the Hubbard dimer is currently in
preparation. In this context, we focus only on the performances of
the adiabatic connection methods corresponding to the LB [Eq. (34)]
and the SPL [Eq. (35)] functionals. The validity of such approx-
imations, in the Hubbard dimer setting, can be assessed without
introducing any other source of errors, such as the ones coming from
using approximate KS orbitals (e.g., PBE,42 PBE0,43 etc.) or basis set
expansions. These LB and SPL formulas require as ingredients the
quantities Ex, EPT2

c , and W∞. The first one, as said, is exactly zero in
our Hubbard dimer, so we have W̃∞ ≡W∞ in this case. The EPT2

c
ingredient corresponds to Eq. (46) for both references (HF and KS),
as discussed in Sec. II B.

W∞ corresponds to the leading term, which is in the order of
λ, in the large-λ expansion of ESD

c (λU, x),

lim
λ→∞

ESD
c (λU, x) ∼ λWSD

∞ . (48)

Explicit expressions for WSD
∞ ’s two different reference states read

WHF
∞ (U, x) =

U
8
(x2
− 4) (49)

and

WKS
∞ (U, x) = −

U
2
(1 − ∣

x
2
∣)

2
. (50)

Note that the latter expression has been already reported in Eq. (56)
of Ref. 14 (as subsequently corrected in the Erratum44).

In Fig. 9, we compare how well the LB approximation works
for the Hubbard dimer in the context of KS-DFT. In Fig. 10, we
report instead the performance of the LB functional used with HF
ingredients as a correction to the traditional correlation energy, EHF

c .
Finally, in Fig. 12, we plot the difference ΔEc = (Ec − ELB

c ) for each
method. As is visible, for a large portion of the parameter space,

FIG. 9. Exact KS correlation energy EKS
c (thick) and its approximation using the LB

functional [Eq. (34)] (dashed) for the Hubbard dimer with ingredients W ′0 = 2 EGL2
c ,

W∞ = WKS
∞
(U, x), and x = Δn(Δv), for U = 0.2, 1, 2, 5, and 10.

the LB approximation for the Hubbard dimer works better for the
HF reference state and as a correction to the traditional correla-
tion energy than for the KS ones. In fact, the only region where the
LB approximation works better for the KS correlation energy cor-
responds to weakly correlated systems, where the external potential
difference dominates over the repulsion term. We also note that just
as for the HF kinetic energy (see Fig. 3), there is a particular combi-
nation of U and Δv for which the LB approximation yields the exact
HF correlation energy.

As a further point, we propose to investigate the performance of
the LB functional adopting mixed ingredients—the W∞ associated
with the KS-DFT correlation energy but with the HF site-occupation
difference as input. This may seem quite an arbitrary choice. How-
ever, it is precisely the way in which said ACMs have mostly been
used, for a very pragmatic reason. WKS

∞ has been known for quite a
long time,30 and an excellent approximation to it in the form of a
gradient expansion has been developed since.45 WHF

∞ has been intro-
duced only recently38 and gradient expansion approximations to it
have just been devised.46 The mixed LB functional thus obtained
is used as a correction to the HF energy. Its performance for the
Hubbard dimer is shown in Fig. 12, contrasted with the internally

FIG. 10. Exact HF correlation energy EHF
c (thick) and its approximation using the

LB functional [Eq. (34)] (dotted-dashed) for the Hubbard dimer with ingredients W ′0
= 2 EMP2

c , W∞ = WHF
∞
(U, x), and x = ΔnHF

(Δv), for U = 0.2, 1, 2, 5, and 10.
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FIG. 11. Difference ΔELB
c = (Ec − ELB

c ) for HF reference state (dotted-dashed)
and for the KS reference state (dashed) at various U, as a function of Δv.

consistent strategy already discussed, as a function of the HF site
occupation. For most of the site-occupation domain, this mixed-
ingredient combination is quite inaccurate and greatly worsening
in performance. There is only a small region where the mixed-
ingredient combination yields better estimates of the HF correlation
energy. This region corresponds to the outer edges of the domain of
ΔnHF, i.e., the weakly correlated cases where ∣ΔnHF

∣ approaches two.
Therefore, in the Hubbard dimer setting, it is clear that the LB

functional (as well as the SPL functional, see discussion below) works
better when the appropriate strong-interaction ingredient for the
HF reference, i.e., WHF

∞ is adopted, rather than WKS
∞ , for high- and

intermediate-correlation regimes. This is somewhat reassuring, as it
shows that these adiabatic connection methods work as intended,
giving better results when consistent ingredients are used and not
benefiting from an error cancellation between the KS ingredient
WKS
∞ and the HF site-occupation input.

The trends observed for the SPL functional across the Hub-
bard dimer parameter space were qualitatively equivalent to those
observed for the LB functional, although the SPL estimate of the
correlation energy appears to be larger than the LB one every-
where for both the KS and the HF references cases. Note that, in

FIG. 12. Difference ΔELB
c = (Ec − ELB

c ) for HF reference state (dotted-dashed)
and for ELB

c with mixed ingredients, namely, W ′0 = 2 EMP2
c , W∞ = WKS

∞
(U, x), and

x = ΔnHF, as a correction to the HF energy (thick), at various U, as a function
of ΔnHF.

the KS case, both LB and SPL functionals appear to bound the
exact correlation energies from above. This, in turn, means that the
SPL correlation energy error is everywhere larger than the LB one,
i.e., ∣ΔEKS,SPL

c ∣ > ∣ΔEKS, LB
c ∣ with ΔEKS, ACM

c = EKS
c − EKS, ACM

c and ACM
= LB, SPL. As an example, the maximum error for U = 10 is 1.14 Eh
for the LB functional and 1.42 Eh for the SPL one.

As for the case of the HF reference, both functionals have a
turning point around the value ∣Δv∣ ≈ U. In the strong-correlation
regime, when ∣Δv∣ < U, they underestimate (in magnitude) the exact
correlation energy. Past the turning point, when ∣Δv∣ > U, they
“overshoot” it. This, in turn, means that the SPL correlation energy
error is larger than the LB one, ∣ΔEHF,SPL

c ∣ > ∣ΔEHF, LB
c ∣ in the more

strongly correlated cases where ∣Δv∣ < U. In the weakly correlated
range of the parameter space (i.e., where ∣Δv∣ > U), we have instead
∣ΔEHF,SPL

c ∣ < ∣ΔEHF, LB
c ∣. Finally, the use of mixed ingredients worsens

the performance of the SPL functional in a manner essentially analo-
gous to that observed for the LB case in Fig. 12. The fact that the two
different functionals show such a close similarity of trends across
the Hubbard dimer parameter space may indicate that the common
rationale underpinning both functionals largely determines their
performances, despite their differences. A detailed account of the
results of the SPL functional, similar to those shown in Figs. 9–12
for the LB one, can be found in the supporting notebook available at
https://notebookarchive.org/2022-06-1ft9zde.

IV. CONCLUSIONS
We have provided an analytical comparison between HF and

KS-DFT methods for the Hubbard dimer model. One of the most
striking findings within this model is that the indirect interaction
energies for the two methods, USD

c,ind, are exactly the same at a given
external potential. In line with Ref. 5, our results show that the HF
solution can “overstabilize” the energy through the external poten-
tial by relaxing the density (site occupation). However, the separate
contributions to the energy typically deviate more from the corre-
sponding interacting ones than their KS counterparts (see Figs. 5
and 6). A notable exception is our demonstration of the change
in sign in the HF kinetic correlation, which we understand to be
a novel finding and contrary to intuitive predictions of its behav-
ior. Furthermore, as the mapping between external potential and
HF site occupation is analytically invertible, unlike the interacting
case, it is possible to obtain the exact correlation energy that cor-
rects the HF approximation as a function of the HF density in a pure
site-occupation function theory (SOFT) spirit [see Eq. (45)].

A natural extension of this work for future consideration is
calculating the correlation energy for the Hubbard dimer in an unre-
stricted Hartree–Fock (UHF) framework. As shown in Ref. 14, in
the strong-correlation regime (∣Δv∣ < U), the UHF site occupation
is much closer to the interacting one than the RHF site occupation
and the Coulson–Fisher point—where restricted and unrestricted
HF energies coincide—takes place at ∣ΔV ∣ ≈ U. Therefore, the profile
of the correlation contributions THF

c , UHF
c , and VHF

c with the UHF
reference is expected to differ significantly in the strong-correlation
range of the domain of Δv and around the Coulson–Fisher point. In
fact, in a similar model system used to study transmission through
an Anderson junction, a dramatic difference in the prediction of the
exact susceptibility was found according to whether a restricted or
an unrestricted solution was used, favoring the symmetry-broken
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approach.47 For more consistent contextualization within other
work,5,40,47 and to examine carefully how symmetry breaking affects
the sign of THF

c , direct comparison of RHF and UHF will be
required.

On the subject of adiabatic connection methods, we have
assessed the performances of the LB and SPL functionals, finding
that, for the more strongly interacting cases, they work better as
approximations to EHF

c , rather than as approximations to EKS
c , as

originally intended. Note that, in our assessment, we were able to
adopt the exact strong-interaction ingredient corresponding to the
HF reference (WHF

∞ ). This is not ordinary. In fact, several works pio-
neering the application of ACMs as a correction to the HF energy
used (a model for) the DFT strong-interaction ingredient, WKS

∞ ,
with the HF density.33–35 The only exception is a recent study in
which an empirical model for WHF

∞ is adopted.36 In turn, as shown
in Fig. 12, the use of WKS

∞ with the HF density greatly worsens the
performances of the ACMs considered, supporting the view that an
improvement of their performances on real molecules might fol-
low from using the approximation for the HF strong-interaction
ingredient that has recently become available.46

In our comparison of HF and KS theories within the Hub-
bard dimer, we have focused exclusively on the correlation part of
the energy. Nonetheless, our conclusions on how these methods
compare from a formal point of view should not vary much by
the inclusion of the exchange energy. In fact, generally, the exact
exchange energy in the two references is expected to differ only
slightly.5 As for how the examined ACMs perform according to
which reference is used (HF or KS), the inclusion of the exchange
energy term does not affect our conclusions because these methods
recover full exact exchange (in other words, the exchange energy
term is merely a constant shift). However, the situation in which
one calculates the self-consistent density coming from the chosen
ACM applied within the KS-DFT framework would be different.
This would give an approximation for the KS quantities input in
the correlation energy functional that would reflect on its outcome,
as well as on the exchange energy. Since the HF framework for the
ACMs demands that the correlation energy is added as a post-self-
consistent-field (post-SCF) correction using HF orbitals as input, to
compare the performances of these interpolations across the two
methods, we have considered only their application on exact KS
quantities and not their self-consistent-field solution. Nonetheless,
this is an aspect to keep in mind since the way in which these ACMs
can be used in actual KS-DFT calculations requires either an under-
lying density functional model to determine approximate KS orbitals
or an SCF implementation. An investigation in the Hubbard dimer
setting, especially in light of the computational cost for an SCF
implementation on real molecules, could be instructive. In fact, an
SCF implementation of these ACMs has been carried out only very
recently and tested for a few simple chemical species (Ne, CO, and
H2).48 Follow-up work, in which we present a detailed analysis of the
adiabatic connection integrand corresponding to the HF reference
[Eq. (29)]38 for the Hubbard dimer, is currently in progress.
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