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In recent years, Adiabatic Connection Interpolations developed within Density Functional Theory (DFT) have
been found to provide satisfactory performances in the calculation of interaction energies when used with
Hartree-Fock (HF) ingredients. The physical and mathematical reasons for such unanticipated performance
have been clarified, to some extent, by studying the strong-interaction limit of the Møller-Plesset (MP) adiabatic
connection. In this work, we calculate both the MP and the DFT adiabatic connection (AC) integrand for the
asymmetric Hubbard dimer, which allows for a systematic investigation at different correlation regimes by
varying two simple parameters in the Hamiltonian: the external potential, ∆v, and the interaction strength,
U . Noticeably, we find that, while the DFT AC integrand appears to be convex in the full parameter space,
the MP integrand may change curvature twice. Furthermore, we discuss different aspects of the second-order
expansion of the correlation energy in each adiabatic connection and we demonstrate that the derivative of the
λ-dependent density in the MP adiabatic connection at λ = 0 (i.e., at the HF density) is zero. Concerning the
strong-interaction limit of both adiabatic connections, we show that while, for a given density, the asymptotic
value of the MP adiabatic connection, WHF

∞ , is lower (or equal) than its DFT analogue, WKS
∞ , this is not

always the case for a given external potential.

I. INTRODUCTION AND THEORETICAL BACKGROUND

Adiabatic connection methods rely on the idea of grad-
ually switching from a formally non-interacting Hamilto-
nian, which is comparatively simple, to a “fully interacting”
one, which is more complicated and describes the actual
electronic system of interest. This is done by multiplying
the interaction operator by a coupling- or interaction-
strength parameter.
Nowadays, there are several different flavors of

adiabatic connections adopted in wavefunction-based
methods;1–10however, the formalism was first developed
in the context of Density Functional Theory (DFT)11–13
and it has been a quite powerful tool to construct models
for the exchange-correlation (XC) energy in Kohn-Sham
DFT14 ever since. Indeed, it has provided the rationale
for density functional approximations (DFAs) such as
hybrid,15,16 double-hybrid,17 and functionals from the ran-
dom phase approximation,18 all of which encode the exact
behaviour of the adiabatic connection at small coupling,
where the interaction can be treated as a perturbation.

In addition to these types of functionals however, this
formalism has also inspired the construction of DFAs
that interpolate between two different limits of the adi-
abatic connection curve, performing what is effectively
an (approximate) all-order resummation of the perturba-
tion series. Initially, DFAs of this kind were built as an
interpolation between the zero- and the full-interaction
limits,19 but, shortly afterwards, more balanced interpo-
lations were constructed by extending the range of the
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coupling strength beyond the physical value, bringing it to
infinity20–24 and thus combining the information coming
from equally extreme limits (where equally extreme is in
the sense that the coupling-strength parameter λ in front
of the interaction operator in the two limits behaves as
λ→∞ or α→∞ with α = 1

λ ). This class of DFAs, col-
lectively referred to as Adiabatic Connection (Interaction)
Interpolations (ACIIs or ACIs) or Adiabatic Connection
Methods (ACMs), has recently drawn much attention.
One important reason for such renewed interest is that
their lack of size-consistency can be corrected very eas-
ily at no extra computational cost, as shown in Ref. 25.
Another fundamental reason is that, although having
been originally devised in a DFT framework, ACMs have
been shown to provide satisfactory performances for bind-
ing and interaction energies (in non-covalent complexes),
when used with Hartree-Fock (HF) ingredients.25–28

Their use in this framework has numerous practical ad-
vantages compared to their use in KS-DFT and some the-
oretical downsides. The downside compared to KS-DFT
is that ACMs on HF ingredients are a simple energetic
correction to the HF approximation: they cannot be used
to obtain the interacting density via a self-consistent-field
(SCF) scheme. On the contrary, ACMs within KS-DFT
can in principle yield an approximate interacting density
via an SCF calculation, but with the practical disadvan-
tage that their implementation is quite involved and ex-
pensive, due to the presence of functional derivatives.29,30
Indeed, ACMs within DFT have been mostly used on
approximate KS orbitals, obtained from a preceding SCF
calculation, but this strategy introduces an extra layer of
approximation, falls back into the known problem of hav-
ing to “cherry-pick” the best functional for the calculation
at hand, and seems to be overall not quite accurate.26

By contrast, when using ACMs within the MP adiabatic
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connection, the orbitals required from the theory are
simply the HF orbitals, which are fixed once for all in the
initial HF calculation. This use of interpolation formulas
with the HF density and orbitals has been theoretically
supported by studies on the strong-interaction limit of
the associated adiabatic connection31,32 (see also Ref. 33
for a review).

Although these theoretical advancements pave the way
for the use of HF ingredients in a density-functional spirit,
many things still need to be better understood. For
instance, the ACMs were constructed as convex inter-
polants, since the DFT adiabatic connection is reckoned
to be (piecewise) convex. However, the MP adiabatic con-
nection is known to be concave in the small-interaction re-
gion for some simple atomic and molecular systems,4,27,34
therefore some variations of ACMs had to be developed to
accommodate this feature.28 To further the development
of ACMs in both frameworks, we present in this work a
careful comparison between the MP and the DFT adia-
batic connection for a model diatomic system at different
correlation regimes: the asymmetric Hubbard dimer. This
model has been useful in the context of Site-Occupation
Function Theory (SOFT), the analogue of DFT for lattice
systems, because the density (or “site-occupation differ-
ence” in the model) can be varied easily by varying two
simple parameters in the model Hamiltonian.
In the following, we review the theory of the MP and

DFT adiabatic connections (section IA) as well as the
model system (section IB). Section II translates the two
adiabatic connections in the language of the Hubbard
dimer, while section III illustrates the results of the calcu-
lations: the shapes of the two curves at different points in
the parameter space (section IIIA), the performance of
a proposed indicator27 as a predictor of the accuracy of
the correlation energy expanded up to second-order (sec-
tion III B) and the density as a function of the coupling
parameter in the MP adiabatic connection (section III C).
Section IV focuses entirely on the strong-interaction limit
of the two adibatic connections, while section V gives
some conclusive remarks.

A. Møller-Plesset and density-fixed adiabatic connections

Let us start from the usual non-relativistic electronic
Hamiltonian

Ĥ = T̂ + V̂ee + V̂ , (1)

with T̂ = −
∑N
i
∇2
i

2 the kinetic energy, N the number of
particles in the system, V̂ee the Coulomb interaction be-
tween all electron pairs, and V̂ =

∑N
i v(i) the N -particle

sum of the external potential, (typically) given by the pos-
itive field of the nuclei, felt by each electron. The lowest
(ground) eigenstate associated with this Hamiltonian is
labelled Ψ. According to the Hartree-Fock approximation,
the expectation value of Ĥ is minimized in the space of
Slater determinants. Slater determinants are defined as

Φ :=
∑
P (−1)PψP (1)(x1) · · ·ψP (N)(xN ), where the ψn(x)

are single-particle wave functions, spatial and spin coordi-
nates are considered separable, i.e. ψn(x) ≡ φn(r)sn(σ),
and the index P lists all possible permutations. The
minimizer of this search is the so-called Hartree-Fock
state:

|ΦHF〉 = arg min
Φ
〈Φ|Ĥ|Φ〉. (2)

Consider now the following λ-dependent Hamiltonian

ĤHF
λ = T̂ + V̂HF + V̂ + λ

(
V̂ee − V̂HF

)
(3)

where V̂HF =
∑N
i,j

(
ĴHFj (xi)− K̂HF

j (xi)
)
,

ĴHFi (x) =

∫
|ψHF
i (x′)|2

|r− r′|
dx′ (4)

and K̂HF
i , which can be defined via its action on a test

function φ(x), reads

K̂HF
i (x)φ(x) = ψHF

i (x)

∫
ψHF∗
i (x′)φ(x′)

|r− r′|
dx′. (5)

The λ-dependent Hamiltonian in eq (3) is such that when
λ = 1, we recover the interacting Hamiltonian [Eq.(1)],
while when λ = 0, we recover the HF Hamiltonian, ĤHF.
ĤHF is the Hamiltonian that has the HF wave function,
ΦHF, as its ground state. For general λ, the ground-state
(GS) wavefunction of eq (3) is denoted ΨHF

λ and the GS
energy EHF

λ .
Defining the correlation energy for the HF reference as

EHF
c = 〈Ψ|Ĥ|Ψ〉 − 〈ΦHF|Ĥ|ΦHF〉, (6)

the Hellmann-Feynman theorem on eq (3) yields

EHF
c =

∫ 1

0

WHF
λ dλ (7)

with

WHF
λ := 〈ΨHF

λ |V̂ee − V̂HF|ΨHF
λ 〉+ cHF0 [nHF]. (8)

The constant shift cHF0 is equal to UH[nHF] +

Ex[{ψHF
i }], where UH[n] = 1

2

∫ ∫ n(r)n(r′)
|r−r′| drdr′ is

the mean field repulsion energy, and Ex[{ψi}] =

− 1
2

∑N
i,j

∫ ∫ ψ∗i (x)ψ∗j (x)ψi(x
′)ψj(x

′)

|r−r′| dxdx′ is the exchange
energy, which comes from evaluating the interaction op-
erator on a Slater determinant and subtracting the mean
field term.

The notationWHF
λ has been adopted31 for the adiabatic

connection integrand including an additional Ex[{ψHF
i }],

which is however a λ-independent quantity. The only
difference between the two definitions is that when λ = 0,
WHF
λ of eq (8) (which is elsewhere referred to as “WHF

λ,c ”)
is gauged to go to zero rather than to Ex[{ψHF

i }].
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The small-λ expansion of WHF
λ recovers the renowned

Møller-Plesset series, i.e.

WHF
λ→0 =

∞∑
n=2

nEMPn
c λn−1. (9)

As for its expansion around the opposite limit, in this
work, we shall only be concerned with the leading-order
term, WHF

∞ ,

WHF
λ→∞ = WHF

∞ + o(λ0), (10)

whose explicit expression reads

WHF
∞ = Eel[n

HF] + Ex[{ψHF
i }], (11)

with

Eel[n] ≡ min
{r1...rN}

{
N∑

i,j>i

1

|ri − rj |
−

N∑
i=1

vH(ri; [n]) + UH[n]

}
,

(12)

the minimum total electrostatic energy of N equal clas-
sical point charges (−e) in a positive background with
continuous charge density (+e)n(r).

We also recall that

lim
λ→∞

ΨHF
λ = argmin

Ψ
〈Ψ|ĤHF

∞ |Ψ〉, (13)

with ĤHF
∞ := V̂ee −

∑N
i,j

∑
σi
ĴHFj (xi)

31. Since ĤHF
∞ is

a purely multiplicative operator, the square modulus of
its minimizing wave function, |ΨHF

∞ |2, is a classical dis-
tribution in R3N localised where ĤHF

∞ as a function of
r1, ..., rN attains its global minimum, i.e.,

|ΨHF
∞ |2 =

1

N !

N !∑
℘=1

N∏
i=1

δ(ri − rmin
℘(i)). (14)

Equation (14) essentially tells us that the particles sit at
fixed positions with respect to one another, forming a per-
fect crystal (with translational and rotational freedom),
while the permutations ℘(i) account for the indistinguisha-
bility of the particles. As mentioned in the Introduction,
beside the interest that the λ → ∞ limit might raise
per se, WHF

∞ is used in interpolation formulas that have
proven worthwhile for the determination of properties of
systems at their physical (λ = 1) interaction strength
(such as for the determination of interaction energies of
non-covalent complexes25).

Let us now review the theory of the adiabatic connection
typically considered in DFT: the density-fixed adiabatic
connection.11–13,35

Consider the Levy-Lieb λ-dependent functional36

Fλ[n] := min
Ψ→n
〈Ψ|T̂ + λV̂ee|Ψ〉, (15)

with ΨKS
λ [n] the minimizer of the above search. Assuming

that n is v-representable for all λ, one can write the
following λ-dependent Hamiltonian:

ĤKS
λ = T̂ + λV̂ee + V̂ λ, (16)

where V̂ λ =
∑N
i v

λ(ri), and

vλ[n0](r) = −δFλ[n]

δn

∣∣∣
n=n0

(r) (17)

is the local external potential that enforces the prescribed
density n at each λ. Defining the XC energy of KS-DFT
as

EKS
xc [n] = F1[n]− F0[n]− UH[n], (18)

the Hellmann-Feynman theorem on eq (15) yields

EKS
xc [n] =

∫ 1

0

WKS
λ [n]dλ (19)

with

WKS
λ [n] := 〈ΨKS

λ [n]|V̂ee|ΨKS
λ [n]〉 − UH[n]. (20)

A small note is that, in some sense, in DFT it is more
natural to define the XC energy rather than only the
correlation part. However, the exchange energy of DFT
is formally analogous to that of HF, in the cases in which
the KS state ΨKS

0 is a Slater determinant, ΦKS, something
which is usually assumed. Then the correlation energy in
DFT can be defined as

EKS
c [n] = EKS

xc [n]− Ex[{ψKS
i }[n]], (21)

where the ψKS
i are the orbitals that form the KS determi-

nant.
The most conspicuous difference between the adiabatic

connection formalism introduced in eq (3) and the DFT
adiabatic connection is that, in this latter, the density
is kept fixed along λ. In other words, there is a subtle
dependence on λ sneaking in via the V̂ λ operator. As a
consequence, while the MP AC integrand corresponds to
the derivative of the λ-dependent energy (minus a shift),
i.e.,

WHF
λ [nHF] =

d

dλ
EHF
λ [nHF] + cHF0 [nHF], (22)

WKS
λ is rather the derivative of Fλ (minus a shift):

WKS
λ [n] =

d

dλ
Fλ[n] + cKS

0 , (23)

with cKS
0 = −UH[n]. In turn, Fλ is also equal to

EKS
λ [n] − Vλ[n], with EKS

λ the GS energy of Hamilto-
nian (16) and Vλ[n] := 〈ΨKS

λ [n]|V̂ λ|ΨKS
λ [n]〉. By reshuf-

fling eq (16), one realizes that the fluctuation potential –
that is, the operator which is turned on by λ – has the
form

(
V̂ee + V̂ λ−V̂ λ=0

λ

)
. Then, the small-λ expansion of

WKS
λ ,37,38

WKS
λ→0[n] = Ex[{ψKS

i [n]}] +

∞∑
n=2

nEGLn
c λn−1, (24)
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contains also the order-by-order expansion of the fluctua-
tion potential inside the perturbation series coefficients
EGLn
c , adding a layer of complexity to the usual MP

expressions. The n = 2 term reads

EGL2
c [n] =

∞∑
i=1

|〈ΦKS|V̂ee −
∑N
j=1 vHx(rj)|ΦKS

i 〉|2

EKS
0 − EKS

0,i

, (25)

where vHx = vH + vx with vx =
δ Ex[{ψKS

i [n]}]
δn

∣∣∣
n=n0

and

ΦKS
i and EKS

0,i are the excited KS states and energies. The
explicit computation of any subsequent term seems absent
from the literature.
The leading order of the large-λ expansion of WKS

λ is
also a constant,23 analogously to eq (10):

WKS
λ→∞[n] = WKS

∞ [n] + o
(
λ−

1
2

)
. (26)

The asymptotic wavefunction in the DFT adiabatic
connection is defined as

ΨKS
∞ = argminΨ→n〈Ψ|ĤKS

∞ |Ψ〉, (27)

with ĤKS
∞ = V̂ee + V̂∞ and where V̂∞ is the N -electron

sum of the one-body operator,

v∞[n0](r) = −δF∞[n]

δn

∣∣∣
n=n0

, (28)

with F∞[n] := limλ→∞
Fλ[n]
λ . In a way reminiscent of

eq (14) but heavily complicated by the density constraint,∣∣ΨKS
∞
∣∣2 is a semi-classical distribution

∣∣ΨKS
∞
∣∣2 =

1

N !

N !∑
℘=1

∫
ds
n(s)

N

N∏
i=1

δ
(
ri − f℘(i)(s)

)
, (29)

where the co-motion functions fi are mathematical objects
which parameterize the set of all configurations where
ĤKS
∞ is minimum. There are N − 1 non-trivial co-motion

functions which provide the position of N − 1 particles,
given the position of a reference one.
Note the difference between Eqs. (14) and (29) :

whereas
∣∣ΨHF
∞
∣∣2 is a perfect crystal with well defined posi-

tions,
∣∣ΨKS
∞
∣∣2 is rather a superposition of infinitely many

cristals, since the N−1 particle positions depend paramet-
rically on the position of a single one which varies freely
(for a more focused description of the strong-interaction
limit of DFT, the interested reader is referred to refer-
ences 23, 39–42).
Finally, we recall that, using the Legendre transform

formulation of Lieb,43 it has been shown31 that, for a
given density,

WHF
∞ [n] ≤WKS

∞ [n]. (30)

Throughout this work, we will use the superscript “SD”
to indicate both the KS and the HF versions of a given
quantity. For example, with ESD

c , we mean EHF
c and/or

EKS
c .

B. The Hubbard Dimer

The Hubbard model is often used to test new methods
and concepts in chemistry and physics because its Hamil-
tonian is extremely simple compared to physical systems
(atoms and molecules), while still incorporating many
of the correlation effects in such systems. Its two-site
version, considered in this work, reads:

Ĥ = T̂ + Û + V̂ (31)

where

T̂ = −t
∑
σ

(
â†0σâ1σ + â†1σâ0σ

)
(32)

Û = U
∑
i=0,1

n̂i↑n̂i↓ (33)

V̂ =
∑
i=0,1

vin̂i, (34)

â†, â are the usual creation and annihilation operators,
σ =↑, ↓ labels the spin of the particles, i = 0, 1 labels
the two sites, and n̂iσ = â†iσâiσ and n̂i = n̂iσ + n̂iσ (with
σ being the spin opposite to σ) are the occupation op-
erators. The reduced variables u = U

2 t and δv = ∆v
2 t ,

with ∆v = v1 − v0, fully determine the eigenstates of the
Hamiltonian (31). Given this, the hopping parameter t
is set to 1/2 throughout the paper and the gauge, i.e.
c = v0 + v1, to zero, as is customary.44 Furthermore, we
consider the dimer at “half-filling,” which means that the
sum of the expectation value of the occupation operators
on each site is set to two (i.e., n0 + n1 = 2) and restrict
ourselves to singlet states (Sz = 0). The site occupa-
tion difference ∆n corresponds to the electron probability
density in the model and is defined as the expectation
value of the difference between the site-occupation opera-
tors, ∆n = 〈Ψ|n̂1− n̂0|Ψ〉. The three-dimensional Hilbert
space is represented in the basis |0 ↑ 0 ↓〉, |1 ↑ 1 ↓〉, and
1√
2

(|0 ↑ 1 ↓〉 − |0 ↓ 1 ↑〉). Note that all energy terms are
symmetric with respect to the change in sign of ∆v, while
the sign of the site-occupation difference is opposite to
that of the external potential difference. We call ε(U,∆v)
the ground-state energy associated with Hamiltonian (31).

The restricted Hartree-Fock Hamiltonian for this model
can be written as:45

ĤRHF = T̂ + ˆ̃V, (35)

with ˆ̃V =
∑
i=0,1 ṽin̂i and ṽi = vi + U

nHF
i

2 . The symbol
nHFi indicates the HF site occupation on each site (as
converged to its stationary point), and U nHF

i

2 is the site
mean field potential. Note that, because nHF0 + nHF1 = 2,
setting v0 + v1 = 0 in eq (31) forces the sum of ṽi to give
ṽ0 + ṽ1 = U .
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II. MP AND DFT ADIABATIC CONNECTIONS FOR THE
HUBBARD DIMER

Using Eqs. (31) and (35), the Møller-Plesset adiabatic
connection [eq (3)] for the Hubbard dimer reads

ĤHF
λ = T̂ +

∑
i

ṽin̂i + λU
∑
i

(
n̂i↑n̂i↓ −

nHF
i

2
n̂i

)
= T̂ + λU

∑
i

n̂i↑n̂i↓ +
∑
i

vλ,HF
i n̂i, (36)

where in the second line we have introduced the λ-
dependent external potential, vλ,HFi , defined as

vλ,HFi := ṽi − λU
nHFi

2
, (37)

and where the gauge – defined as cλ,HF = vλ,HF0 + vλ,HF1 –
depends linearly on λ:

cλ,HF = U (1− λ) . (38)

The associated λ-dependent ground state, ΨHF
λ , can be

calculated explicitly for any pair of interaction param-
eter and external potential, {U,∆v}. Consequently, it
is also possible to study the λ-dependent behaviour of
relevant quantities such as the adiabatic connection in-
tegrand, WHF

λ (section IIIA), and the site occupation
difference, ∆nHFλ (section III C), analytically as functions
of the variables {U,∆v}. They can also be expressed
analytically as functions of ∆nHF, the HF site occupation
difference, in place of ∆v, as the function f : ∆v → ∆nHF

is analytically invertible.45
The MP adiabatic connection integrand for our model

system reads

WHF
λ = 〈ΨHF

λ |Û −U
∑
i

nHF
i

2
n̂i|ΨHF

λ 〉+
U

2

(
1 +

(
∆nHF

2

)2
)
,

(39)

where the term in the Dirac brakets is simply dEHF
λ

dλ and
the remainder is cHF0 for the Hubbard dimer, i.e. the shift
which makes WHF

0 = 0.
As for the density-fixed adiabatic connection, even in

the simple setting of the asymmetric Hubbard dimer,
the λ-dependent potential that keeps the density fixed
cannot be determined in closed form. However, it can be
computed quite efficiently by using Lieb’s formulation,43

∆vλ,KS(U, ∆n) = arg max
∆v

(
ε (λU, ∆v)− ∆v

2
∆n

)
,

(40)
with ∆vλ,KS = vλ,KS

1 − vλ,KS
0 and the usual gauge vλ,KS

1 +

vλ,KS
0 = 0. With ∆vλ,KS, we construct the λ-dependent
Hamiltonian of the density-fixed adiabatic connection
[eq (16)] for the Hubbard dimer,

HKS
λ = T̂ + λU

∑
i

n̂i↑n̂i↓ +
∆vλ,KS(U, ∆n)

2
(n̂1 − n̂0) ,

(41)

and the corresponding AC integrand [eq (20)],

WKS
λ = 〈ΨKS

λ | Û |ΨKS
λ 〉+

U

2

(
1 +

(
∆n

2

)2
)
, (42)

where ΨKS
λ is the λ-dependent ground state associated

with the Hamiltonian given in eq (41). Differently than
for eq (39), the term in Dirac brackets in (42) is not the
derivative of the total energy with respect to λ, but rather
the derivative of Fλ [eq (15)], which in this setting reads

Fλ(U, ∆n) = 〈ΨKS
λ | T̂ + λU

∑
i

n̂i↑n̂i↓ |ΨKS
λ 〉. (43)

Equation (17) then translates into

∆vλ,KS(U, ∆n)

2
= − ∂Fλ(U, ∆n)

∂∆n
. (44)

Both AC integrands are defined in such a way that

ESD
c =

∫ 1

0

W SD
λ dλ (45)

with SD=HF, KS and ESD
c = 〈Ψ|Ĥ|Ψ〉 − 〈ΨSD

0 |Ĥ|ΨSD
0 〉

(compare Eqs.(6) and (19), (21)).
Introducing a generalized λ-dependent correlation en-

ergy (not unusual in DFT37,46) as

ESD
c,λ =

∫ λ

0

W SD
λ′ dλ′, (46)

where ESD
c,1 = ESD

c , in the Hubbard dimer setting, one
finds

ESD
c,λ(U,∆n) = ESD

c (λU,∆n) (47)

for both types of correlation energies.

III. RESULTS

In this section, we present the analytical and numerical
results obtained for the MP and DFT adiabatic connec-
tions, respectively.

A. Shapes of the two adiabatic connection integrands

In Figure 1, we report the two AC integrands, Eqs. (39)
and (42), in the 0 < λ < 1 range (first column) and
for λ large enough for both AC integrands to converge
to their asymptotic values (second column), for selected
values of U and |∆v| parameters. For U = 1, we take
|∆v| = 10, 1, 0.1, while for U = 0.1 and U = 10 we
consider only |∆v| = U .
The ratio between U and |∆v| is an important factor

in determining the amount and the type of correlation
present in a given calculation. A dominant U will favor
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FIG. 1: Shapes of the two AC integrands, WKS
λ (solid red) and WHF

λ (solid blue), at different correlation regimes. In the left column,
λ ranges between 0 and 1 and 2EGL2

c λ (dashed red) and 2EMP2
c λ (dashed blue) are plotted for comparison. In the right column, the

range extends to λ large enough for both AC integrands to converge to their asymptotic values, WKS
∞ (dashed red) and WHF

∞ (dashed
blue). For illustrative purposes, the values of U/|∆v| selected are 0.1, 1, and 10 (as per the plots’ labels). For U = 0.1 and |∆v| = 0.1
both AC integrands show an almost perfectly linear behaviour within the relevant λ range from 0 to 1 and are barely distinguishable from
one another [panel (a)]. At large λ, their behaviour does not differ very much quantitatively and looks very similar qualitatively [(b)]. In
the other panels with U/|∆v| = 1 [(e) and (i)] WKS

λ and WHF
λ differ visibly in the range 0 ≤ λ ≤ 1. Moreover, in (i) there is a striking

qualitative difference: the MP adiabatic connection integrand changes curvature twice. Though not clearly visible from the plot, WHF
λ

starts convex, turning concave around λ ≈ 0.22 and turning convex again around λ ≈ 0.99. The change from concave to convex of WHF
λ is

clearly visible in panel (d), where the ratio U/|∆v| = 0.1 and the system is “weakly interacting”. Finally, note that WHF
λ starts always

above WKS
λ and, in the cases plotted, ends below WKS

λ , but the two curves cross beyond λ = 1. See main text for more discussion.
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localization of each “particle” on a single site (strong
interaction or small |∆n|), whereas a dominant |∆v| will
favor both particles on one site (weak interaction or large
|∆n|). Nevertheless, the absolute magnitude of U is
also important. For example, in the first panel where
U/|∆v| = 1 and U = 0.1, both AC curves show an almost
perfect linear behavior in the relevant range between 0 and
1. However, for the same ratio and U = 1 and 10 [panels
(e) and (i)], the AC integrands deviate significantly from
linearity (increasingly for larger U). An “almost linear”
AC integrand is considered as an example of dynamical
correlation whereas a markedly non-linear one as static
correlation (see e.g. Refs. 27 and 47). This difference is
often assessed globally by looking at the expansion of the
correlation energy at small λ,

lim
λ→0

ESD
c,λ = λ2ESD

c,(2) + o(λ2). (48)

In particular, using only the leading order coefficient,
ESD
c,(2), to approximate the correlation energy corresponds

to approximating the integrand W SD
λ as a linear function

with slope 2 ∗ ESD
c,(2). This coefficient is typically referred

to as MP2 and GL2 correlation energies, for the MP and
the DFT adiabatic connection, respectively (see Eqs. (9)
and (24)). MP2 and GL2 correlation energies can be used
as approximations of the total correlation energy and
their performance can be measured through their relative
error:

rel. err. SD =
∣∣∣ESD

c,(2) − E
SD
c

ESD
c

∣∣∣× 100. (49)

From Figure 1, panel (g), we see that a dominant U does
not imply that the AC integrand curve is far from linear
or that the relative error is big. In this case, one may talk
about “strong dynamical correlation.” Indeed the relative
error for U = 1 and |∆v| = 0.1 is 6.0% and 6.1% for the
MP and the DFT adiabatic connection, respectively. More
quantitative data can be found in Table I, which reports
the values of interacting and HF site-occupation difference,
correlation energy, ESD

c,(2)/E
SD
c ratio, and relative error,

for U/|∆v| = 0.1, 1, 10 and U = 0.1, 1, 10. The quantity
(1− λSDext), which will be the focus of section III B, is also
reported.

Qualitatively, we observe a convex DFT adiabatic con-
nection integrand across the full parameter space of the
Hubbard dimer. This result adds to the long list of highly
accurate numerical evidence of the (piecewise) convexity
of this curve,27,47–55 something which has yet to be proven.
On the contrary, for the MP adiabatic connection, cases
have been reported where the integrand is rather concave
at small λ.4,27,34 However, in the Hubbard dimer setting,
we find that the MP adiabatic connection integrand may
change curvature twice. In particular, for any U > 0, we
observe a double change of curvature (DCOC) for a con-
tinuous range of ∆v beyond a certain value that depends
on U .

For example, in panel (i), WHF
λ (blue solid curve) starts

convex, turning concave around λ ≈ 0.22 and turning

-2 -1 0 1 2

10-12

10-9

10-6

0.001

1

U=0.2

U=1

U=2

U=5

U=10

FIG. 2: Difference between total correlation energy and
its second-order expansion, Ec − ESD

c,(2), with SD = HF
(dashed) and KS (solid) for U = 0.2, 1, 2, 5, 10 as functions
of the HF and interacting site-occupation difference, re-
spectively. The difference is always positive across all the
site-occupation domain, meaning that the second-order
expansion always overshoots the correlation energy (the
scale is logarithmic to help readability).

convex again around λ ≈ 0.99. The change in curvature
from concave to convex of WHF

λ is extremely visible in
panel (d), where ∆v is dominating and the system is in
the weak-interaction regime. Note that the integrand of
eq (39) is convex (i.e. lying above its tangent) around
λ → 0 for any pair of {U,∆v}. In fact, in the cases
in which WHF

λ is concave in some region [e.g., for the
cases plotted in panels (d) and (i-j)], the MP adiabatic
connection integrand still starts convex, having to change
curvature an even number of times to reach a bound
asymptotic value. This is at variance with the mentioned
cases where a change of curvature had been previously
observed, for which the adiabatic connection integrand is
concave (i.e. lying below its tangent) around zero (the He
atom is one such example).
Oftentimes, whether EMP2

c overestimates or underes-
timates the exact correlation energy EHF

c has been con-
sidered27,31,34 as an indicator for the convex or concave
nature of the curve at the origin; however, this reasoning
only holds if the curvature changes at most once in the
range 0 ≤ λ ≤ 1, something which our findings show
to not always hold true. Nonetheless, in the Hubbard
dimer setting, we find that EMP2

c always overestimates in
magnitude the correlation energy, in line with the naive ex-
pectation that an AC integrand that is convex at small λ
indicates an EMP2

c that overshoots the correlation energy
(see Figure 2).

In conclusion, in the Hubbard dimer model at any
correlation regime we have

|ESD
c,(2)| ≥ |E

SD
c | (50)

for “SD” either KS (AC integrand convex everywhere) or
HF (AC integrand convex for λ = 0).
Moreover, as noted in Ref. 45, ESD

c,(2) has formally the
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same expression in the two adiabatic connections, namely

ESD
c,(2) = − 1

256
U2
(
4− x2

)5/2 (51)

with x = ∆nSD. In turn, |∆nHF| ≥ |∆nKS| and 0 ≤
|∆nSD| < 2. Then, for a given {U,∆v} pair,

|EGL2
c | ≥ |EMP2

c |. (52)

The thorny question that remains is what causes the ob-
served double change of curvature in WHF

λ (and whether
it can be expected in Coulomb systems). As seen, the
DCOC in the Hubbard dimer setting occurs in a con-
tinuous range of |∆v|, starting from |∆v| around U to
|∆v| → ∞, i.e., starting around the switch between strong-
and weak-interaction regime and persisting in the weak-
interaction regime. Although we have not found a simple
explanation for the DCOC, we highlight in the following
some aspects of the MP adiabatic connection that might
endow it with such “extra flexibility” compared to the
DFT one.

Let us start by analyzing the leading coefficient in the
weak-interaction expansion of the correlation energy.

Despite the formal equivalence of ESD
c,(2)in the two adia-

batic connections [eq (51)], how this energy term is parsed
into the individual components is quite different between
the DFT and the MP case. To see this, let us introduce
the definition of the individual components of the total
correlation energy as

USD
c,λ = 〈ΨSD

λ |λ Û |ΨSD
λ 〉 − 〈ΨSD

0 |λ Û |ΨSD
0 〉 (53a)

T SD
c,λ = 〈ΨSD

λ |T̂ |ΨSD
λ 〉 − 〈ΨSD

0 |T̂ |ΨSD
0 〉 (53b)

V SD
c,λ = 〈ΨSD

λ | ˆVλ,SD|ΨSD
λ 〉 − 〈ΨSD

0 |V̂|ΨSD
0 〉 (53c)

=
∆vλ,SD

2

(
∆nλ,SD −∆nSD

)
With ˆVλ,SD =

∑
i v
λ,SD
i n̂i. (Note that, for each individual

contribution to correlation, the analogue of eq (47) holds
true.) The λ→ 0 expansion of these terms looks formally
identical to eq (48) and in both HF and KS references,
we have

ESD
c,(2) =

USD
c,(2)

2
. (54)

However, while in DFT

TKS
c,(2) = −

UKS
c,(2)

2
(55)

and TKS
c,(2) + UKS

c,(2) = EKS
c,(2), in the MP adiabatic con-

nection, the non-zero V HF
c,λ complicates the expression

significantly. There, we have

THF
c,(2) =

(
4− 5x2

) (
4− x2

)5/2
1024

(56a)

V HF
c,(2) =

5x2
(
4− x2

)5/2
1024

, (56b)

such that

THF
c,(2) + V HF

c,(2) = −
UHF
c,(2)

2
. (57)

The presence of V HF
c,λ appears to be possibly “the” cru-

cial difference between the DFT and the MP adiabatic
connection.

Another way to rephrase this crucial difference is that
the DFT AC integrand only contains the two-body op-
erator, whereas the MP AC integrand also contains the
one-body operator corresponding to the external potential
correction [compare Eqs. (42) and (39)].

B. Analysis of correlation indicators and accuracy predictors

In this section, we calculate the correlation indicator
λext,27,55 used in the context of adiabatic connection meth-
ods, in the full parameter space of our model for both
adiabatic connections. This indicator is defined as

λSDext :=
W SD

1

2ESD
c,(2)

. (58)

This is a dimensionless quantity that determines the λ
value at which the linear curve, given by the slope of
W SD
λ at λ = 0, crosses the constant curve corresponding

to W SD
c,1 , where W SD

c,1 = W SD
1 −W SD

0 . (However, in our
model, W SD

0 = 0, therefore W SD
c,1 = W SD

1 .)
By definition, λSDext = 1 means that the curve 2ESD

c,(2)λ

crosses the constant W SD
1 exactly at λ = 1. In the as-

sumption that the MP AC integrand changes curvature at
most once in the relevant range of λ between zero and one,
λSDext = 1 is indeed enough to say that the second-order
energy expansion recovers all the correlation energy and
that the AC integrand is linear and fully “dynamically
correlated.” Thus, how much λSDext differs from one, i.e.,
the quantity |1−λSDext|, has been considered as a predictor
of the accuracy of the second-order perturbation estimate
of the correlation energy. This can be measured using the
relative error defined in eq (49). However, the possible
presence of more than one change of curvature invalidates
this deduction. Our results therefore raise the interesting
question of whether the quantity |1 − λHFext| remains a
meaningful predictor of the corresponding relative error.

In addition to this possible issue arising from the double
change of curvature, the correspondence between a certain
non-zero value of |1− λSDext| and the relative error is not
obvious. Even with the assumption that there is at most
one change of curvature in the relevant range of λ between
0 and 1 holding (and therefore λSDext = 1 implies that
the relative error is exactly zero), it is useful to extend
our analysis to the DFT adiabatic connection as well,
despite it appearing to give a convex integrand in the
full parameter space of our model, to further clarify this
correspondence and its applicability.
A technical aspect worth mentioning is that the accu-

racy predictor |1− λext|, introduced in reference 27, has
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U = 0.1 U = 1 U = 10

U/|∆v| 0.1 1 10 0.1 1 10 0.1 1 10
|∆v| 1 0.1 0.01 10 1 0.1 100 10 1
∆nHF 1.363 0.181 0.018 1.988 0.938 0.100 2.000 1.686 0.182
∆n 1.3632 0.180 0.018 1.988 0.775 0.068 2.000 0.981 0.004
|EHF

c | 2.5 ×10−4 1.2 ×10−3 1.3 ×10−3 1.8 ×10−6 0.060 0.117 1.9×10−9 0.305 4.054
|EKS

c | 2.5 ×10−4 1.2 ×10−3 1.3 ×10−3 1.8 ×10−6 0.068 0.117 1.9×10−9 1.145 4.098
EMP2

c /EHF
c 1.033 1.001 1.001 1.109 1.125 1.060 1.111 1.843 3.020

EGL2
c /EKS

c 1.035 1.001 1.001 1.109 1.230 1.061 1.111 5.483 3.050
rel. err. HF 3.3% 0.1% 0.1% 10.9% 12.5% 6.0% 11.1% 84.3% 202%
rel. err. KS 3.5% 0.1% 0.1% 10.9% 23.0% 6.1% 11.1% 448.3% 205%
1− λHF

ext 0.047 0.002 0.001 0.142 0.144 0.106 0.145 0.409 0.802
1− λKS

ext 0.050 0.003 0.001 0.143 0.289 0.108 0.145 0.898 0.804

TABLE I: HF and KS site occupation differences, ∆nHF and ∆n, correlation energies, EHF
c and EKS

c , ratio between
second-order and exact correlation energy, EMP2

c /EHF
c and EGL2

c /EKS
c , relative error on correlation energy, “rel. err.

SD” [eq (49)] and (1 − λSDext) [see eq (58)], for U = 0.1, 1, 10 and U/|∆v| = 0.1, 1, 10. This choice corresponds to
moving from “weak” to “strong interaction” regime for a fixed U , as can be appreciated from the decreasing values of
∆n and ∆nHF and the increasing values of EHF

c and EKS
c .

been applied in the context of the MP adiabatic connec-
tion in terms of a modified correlation indicator, λSPLext .
“SPL” refers to the Seidl-Perdew-Levy formula,20 which
approximates the DFT AC integrand using a convex in-
terpolant and thus serves as a means to approximate
Wc,1 (which is typically unknown in its exact form). This
interpolation formula has proven surprisingly useful for
molecular applications when used in the framework of
the MP AC.25–28,56 In the above applications, however,
the SPL interpolation formula is used as a correction not
to absolute energies, but rather to energy differences, as
its accuracy has been found to be poor for the former
but satisfactory for the latter. Thus, also the use of the
accuracy predictor, if one uses the SPL or similar for-
mulas to approximate Wc,1, is recommended in terms
of energy differences and not absolute energies. In the
present work, however, Wc,1 (or W1) can be calculated
exactly and therefore can be used directly to construct
|1− λext| for absolute energies, in line with the original
idea55 that the relative error [eq (49)] increases as λext
deviates from one. Finally note that, by virtue of eq (50),
λext ≤ 1 and the modulus can be ignored in the context
of this work.

In Figure 3, we plot the relative error on the y-axis
and |1 − λext| on the x-axis for the same {U,∆n} pair,
exploring U = 0.1, 1, 10 and the full site occupation dif-
ference range, 0 ≤ ∆n ≤ 2, within the MP (left column)
and the DFT (right) adiabatic connections. From the
plots, we see that the relative error is not a function of
the quantity |1−λext|; however, this quantity does appear
to be a significant factor in determining the relative error.
Moreover, although there is a somewhat commensurate
behavior between the two columns, there are both quanti-
tative and qualitative differences between the results for
the MP and DFT adiabatic connections. Quantitatively,
the error given by GL2 is both more sensitive to U and

typically larger than the error given by MP2. The same is
true if we look at |1−λKS

ext| and |1−λHFext|. This trend can
be more easily appreciated by looking at Table II where
the mean, µ, of the distribution of the relative error as
well as of the |1− λext| for each given U over the full ∆n
range is calculated, together with their standard devia-
tions, σ. In particular, we see that µrel.err.KS > µrel.err.HF
and µ|1−λKS

ext| > µ|1−λHF
ext| in all cases, and we see that the

increment of the KS quantities with U is much larger than
that of the HF quantities. The qualitative differences be-
tween the two columns of Figure 3 emerge by looking
at how smaller ∆n values are placed with respect to the
relative error for the cases where fixed |1−λext| yields two
branches. For example, in the first two rows (U = 0.1, 1),
we see that, for a fixed λext, a lower ∆n (typically) corre-
sponds to a larger relative error for HF (left column) and
to a smaller relative error for KS (right column). Since a
smaller ∆n may be associated with stronger interaction,
it seems that “more weakly-interacting cases”, meaning
1.9 ≤ ∆n ≤ 2 (in red), may be somehow more problem-
atic than more strongly-interacting, meaning 0 ≤ ∆n ≤ 1,
in the DFT adiabatic connection. In the case of the MP
adiabatic connection, this swap in the expected order
happens only for few values in the first two panels. For
example, for U = 1 and at |1 − λHFext| ≡ 0.11, the red
curve is above the yellow one. For U = 10, the situation
becomes even more involved, as up to three different val-
ues of relative error may correspond to a given |1− λHFext|.
While for intermediately interacting cases [ 1 ≤ ∆n ≤ 1.9
(in blue)], the relative error appears to be higher than for
weakly interacting cases [ 1.9 ≤ ∆n ≤ 2 (in red)], strongly
interacting cases [ 0 ≤ ∆n ≤ 1 (in yellow)], appear to
correspond to the lowest relative error.

To conclude, it seems that |1 − λext| is an important
contribution to the relative error even in the presence of
a double change of curvature, however not in a straight-



10

0.00 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

0.00 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

5

10

15

20

25

30

35

0.0 0.1 0.2 0.3 0.4
0

10

20

30

40

0.0 0.2 0.4 0.6 0.8
0

50

100

150

200

0.0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

FIG. 3: Relative error in the second-order estimate of the correlation energy vs |1−λext| for different values of on-site interaction strength
U = 0.1, 1, 10 and full domain of interacting site-occupation difference: 0 < ∆n < 2 (data points’ spacing is 0.0001). The full domain is split
into subdomains: 0 ≤ ∆n ≤ 1 (yellow), 1 ≤ ∆n ≤ 1.9 (blue), and 1.9 ≤ ∆n ≤ 2 (red). Left column concerns the Møller-Plesset adiabatic
connection and EHF

c , while right column, the DFT adiabatic connection and EKS
c .

forward way. The question, “What relative error, y, cor-
responds to a |1 − λext| = x?” is ill-posed, in the sense
that rather a range of relative error, y ± ∆y, seems to
correspond to a value x. This range is different depending
on whether we are considering the MP or DFT adiabatic
connections and also depends on U . Unwrapping the
dependence of the relative error on |1−λext| may be com-
plicated, but the picture that we get from investigating
these quantities in the Hubbard dimer setting seems to
recommend caution when using this latter as an accuracy
predictor.

On the positive side, it appears that, if |1 − λext| <
0.1, the relative error remains below 10% in all cases
(regardless of U) and that, if a pair of {U,∆n} makes
|1 − λext| < 0.1 in one adiabatic connection, the same
holds true for the other. This is because the behavior
of the two adiabatic connections differs more for larger

|1− λext|. Consequently, |1− λext| < 0.1 is the range in
which this predictor is more consistent between the two
adiabatic connections.

TABLE II: Mean, µ, and standard deviation, σ, for
the distributions of the relative error and of |1 − λext|
accross the full site-occupation range, 0 ≤ ∆n ≤ 2, for
U = 0.1, 1, 10 in the MP and DFT adiabatic connections
(“HF” and “KS”, respectively).

U = 0.1 U = 1 U = 10
HF KS HF KS HF KS

µrel. err. 1.92 2.04 17.84 25.85 105.81 379.72
σrel. err. 2.33 2.45 20.22 28.78 115.71 392.20
µ|1−λext| 0.028 0.030 0.198 0.290 0.502 0.872
σ|1−λext| 0.033 0.035 0.213 0.308 0.517 0.873
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FIG. 4: Evolution of the λ-dependent site occupation,
∆nHFλ , along λ for U = 10 and |∆v| = 10. The tangent
to the curve at λ = 0 is plotted in dashed blue, while the
interacting site occupation, ∆n, in dashed red.

C. The λ-dependent site occupation difference

In this section, we focus solely on the λ-dependent site
occupation difference in the MP adiabatic connection,
since the site-occupation difference is kept fixed in the
DFT adiabatic connection by construction. Quite con-
veniently, in the Hubbard dimer, this quantity can be
expressed analytically at any λ in the full {U,∆v} pa-
rameter space (although the expression is lengthy and
we eschew reporting it here). The evolution of ∆nHFλ
along λ is shown in Figure 4. Even though the plot only
shows ∆nHFλ for U = |∆v| = 10, the properties that can
be observed in the figure are not specific to these values.
The first thing we notice is that

lim
λ→∞

∆nHFλ ∼ 0 ∀ U, ∆v <∞. (59)

Namely, for any finite ∆v (or any ∆nHF < 2 ), the effect of
the repulsion enhanced by λ is asymptotically dominating,
confining one particle on each site. Secondly, we see that
the first-order derivative of the site occupation in λ is
zero at λ = 0,

∂∆nHFλ
∂λ

∣∣∣
λ=0

= 0, (60)

meaning that the HF site occupation is stable under first-
order variations of the coupling parameter. To see why
this is the case, we use the expression of the interacting
wavefunction according to perturbation theory up to first
order,

|ΨHF
λ 〉 ∼ |ΨHF

0 〉+ λ
∑
i 6=0

〈ΨHF
0,i |V̂ |ΨHF

0 〉
EHF

0 − EHF
0,i

|ΨHF
0,i 〉, (61)

where the perturbation operator is, following eq (36), V̂ =

U
∑
i

(
n̂i↑n̂i↓ − nHF

i

2 n̂i

)
and where the extra subscript i

in ΨHF
0,i and EHF

0,i indicates the spectrum of excited states
and corresponding energies of the HF reference system.
We omit it when indicating the GS and its energy (in other
words, we write ΨHF

0 instead of ΨHF
0,0 ). In the Hubbard

dimer, the summation is finite and exhausted with only
two terms: i = 1 and i = 2, corresponding to the first
and second excited states. Then, the slope of the site
occupation difference around λ = 0 is given by:

∂∆nHFλ
∂λ

∣∣∣
λ=0

= 2

(
〈ΨHF

0,1 |V̂ |ΨHF
0 〉

EHF
0 − EHF

0,1

〈ΨHF
0 |∆n̂|ΨHF

0,1 〉+

〈ΨHF
0,2 |V̂ |ΨHF

0 〉
EHF

0 − EHF
0,2

〈ΨHF
0 |∆n̂|ΨHF

0,2 〉

)
(62)

where ∆n̂ = n̂1 − n̂0. The first term in the summation
is zero by virtue of Brillouin’s theorem which makes the
numerator 〈ΨHF

0,1 |V̂ |ΨHF
0 〉 vanish, as the first excited state

corresponds to a singly excited determinant. On the
contrary, the term 〈ΨHF

0,2 |V̂ |ΨHF
0 〉 is non-zero, but the

transition dipole moment 〈ΨHF
0 |∆n̂|ΨHF

0,2 〉 is, owing to
the occupation of the doubly excited state being exactly
reversed compared to the ground state.

Translating the site-occupation-difference operator, ∆n̂,
into the density operator in real-space,

∑N
i δ (r− ri),

one may thus expect that the λ-dependent density
will be flat around λ = 0 also for two-electron sys-
tems in real-space whenever the transition probabil-
ity 〈ΦHF|

∑N
i δ (r− ri) |

(
ΦHF

)ab
ij
〉 between any doubly-

excited HF configuration and the ground HF state is
negligible (or exactly zero).

IV. STRONG-INTERACTION LIMITS AND
INEQUALITIES

For the Hubbard dimer, the asymptotic Hamiltonian
ĤHF
∞ introduced in eq (13) reads

ĤHF
∞ = U

∑
i

(
n̂i↑n̂i↓ −

nHFi
2
n̂i

)
(63)

which is diagonal in the adopted basis, the asymptotic
eigenstates being simply (100)T , (010)T , (001)T . Let us
now compare the MP asymptotic Hamiltonian with the
DFT one.
Although we do not know the expression of the λ-

dependent external potential ∆vλ,KS at each λ in closed
form, we know the large-λ behaviour of Fλ to be44

Fλ(∆n) ∼ λ U
2
|∆n| λ→∞. (64)

Then limλ→∞
∆vλ,KS

λ = ∆v∞ = −U sgn (∆n), and the
asymptotic Hamiltonian introduced in eq (27) reads in
this case

ĤKS
∞ = U

∑
i

n̂i↑n̂i↓ −
U

2
sgn (∆n) (n̂1 − n̂0) . (65)
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Just as ĤHF
∞ , ĤKS

∞ is diagonal in the adopted basis.
In Table III, we report the expectation value of the

asymptotic Hamiltonian, ĤSD
∞ for the two ACs in each of

the basis vectors. For the MP AC, the GS corresponds
to the state where each particle is confined on each site,
except for ∆nHF = ±2, when the state with both particles
on the site with lower external potential also contributes.
So, for |∆nHF| < 2, the asymptotic wave function corre-
sponds simply to ΨHF

∞ = (001)
T yielding ∆nHF∞ = 0 as

already seen in Figure 4. On the contrary, for the DFT
AC, the ground state is two-fold degenerate, except for
∆n = 0, for which the sign of the site occupation differ-
ence is undefined and both states with two particles on
one site contribute. To satisfy the density constraint, we
need to make a linear combination which mixes the state
with ∆n = 0 with the other relevant state according to
the sign of ∆n. Considering, e.g., only the branch with
∆n > 0, we have

ΨKS
∞ =

 0
k√

1− k2

 , (66)

where k =
√

∆n√
2
. This picture is quite different than the

usual SCE picture (in real-space) where the co-motion
functions [eq (29)] enforce the density constraint. Here,
this task is taken over by the coefficients of the basis vec-
tors, which determine how the degenerate ground states
are linearly combined.
Let us now consider the asymptotic AC integrands,

W SD
∞ . It is quite instructive to look at how the argu-

ment used in reference 31 to prove eq (30) can be easily
adapted to the Hubbard dimer case. We introduce first
the bifunctional W(∆n,∆v) as

W(∆n,∆v) := min
Ψ
〈Ψ|Û − ∆v

2
(n̂1 − n̂0) |Ψ〉+

∆v

2
∆n (67)

as well as the following definitions

UH(∆n) :=
U

2

(
1 +

(
∆n

2

)2
)

(68)

∆vH(∆n) := 2
dUH(∆n)

d∆n
. (69)

Note that we define the Hartree energy, UH, and poten-
tial, ∆vH as in Ref. 45, although different definitions are
possible.44

TABLE III: Expectation value 〈ĤSD
∞ 〉 evaluated on each

of the basis vectors for SD = HF, KS.

MP DFT
(100)T U

2
∆nHF U (1 + sgn(∆n))

(010)T −U
2

∆nHF U (1− sgn(∆n))

(001)T −U 0

Using the Legendre-Fenchel transform formulation of
SOFT, one finds

W(∆n,∆v∞(∆n)) = max
∆v
W(∆n,∆v) (70)

= min
Ψ→∆n

〈Ψ|Û |Ψ〉. (71)

On the other hand, plugging the asymptotic wave func-
tion ΨKS

∞ into eq (42), we have

WKS
∞ (∆n) = 〈ΨKS

∞ | Û |ΨKS
∞ 〉 − UH(∆n). (72)

Since the minimizer in eq (71) is precisely ΨKS
∞ , we have(

WKS
∞ + UH

)
(∆n) = max

∆v
W(∆n,∆v). (73)

In the MP strong-interaction case, we cannot make use
of any convex analysis tool. However, substituting the
asymptotic wave function ΨHF

∞ into definition (39) for
general λ and using Eqs. (67), (68) and (69), one obtains(

WHF
∞ + UH

) (
∆nHF

)
=W(∆nHF,∆vH(∆nHF)) (74)

Choosing now ∆n ≡ ∆nHF and comparing Eqs. (73)
and (74) leads to

WHF
∞ (∆nHF) ≤WKS

∞ (∆n)
∣∣∣
∆n≡∆nHF

(75)

which is the Hubbard dimer analogue of eq (30).
In practice, we can also work out the explicit expres-

sions, which read

WHF
∞ (∆nHF) =

U

2

((
∆nHF

2

)2

− 1

)
, (76)

and

WKS
∞ (∆n) = −U

2

(
1−

∣∣∣∆n
2

∣∣∣)2

(77)

This latter expression is in agreement with eq (56) of
reference 44 (as in the corrigendum57) for EKS

c in the
U → ∞ limit. This limit corresponds to the situation
where the indirect interaction energy (the on-site repulsion
minus the mean field term) becomes dominant and, indeed,
we have EKS

c ∼ UKS
c ∼ WKS

∞ as U → ∞, while TKS
c is

subleading. In the HF case, we do have

EHF
c ∼WHF

∞ for U →∞, (78)

with THF
c similarly subleading; however in this case the

extra term coming from the external potential remains
non-negligible at large U and contributes to WHF

∞ . Intro-
ducing the leading-order terms in the large-λ expansions
of the individual components [eq (53)],

lim
λ→∞

UHF
c,λ = UHF

c,∞ λ+ o(λ) (79a)

lim
λ→∞

V HF
c,λ = V HF

c,∞ λ+ o(λ), (79b)
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FIG. 5: Strong-interaction limit as a function of the
occupation, W∞ (∆n), of the MP (dashed) and of the
DFT (solid) adiabatic connections.

where UHF
c,∞ = −UH(∆nHF) and V HF

c,∞ = −U , then

WHF
∞ = UHF

c,∞ + V HF
c,∞. (80)

The quantities WKS
∞ and WHF

∞ are plotted in fig 6 for
the same site-occupation difference; from which the in-
equality (75) nicely stands out (the dashed line which
corresponds to WHF

∞ is always below the thick one ex-
cept at ∆n = 0). However, considering that both the
interacting and the HF site-occupation differences are
known analytically as functions of the external potential
difference, ∆v, it becomes interesting to look at how the
two asymptotic AC integrands relate to one another for
the same interacting Hamiltonian (same {U,∆v} pair),
plotted in fig 6. From the figure, we can see that there is
actually a significant range of ∆v, at fixed U , for which
the DFT asymptotic AC integrand is actually lower than
the MP one. This may come as a surprise, since, in fig 1,
no such cases are shown, but this is only because we
chose to plot examples from the three different regimes
U/|∆v| = 0.1, 1, 10. However, choosing, e.g., U = 10 and
∆v = 5, the DFT asymptotic AC integrand is lower than
the MP (compare fig 6). Indeed, in fig 7 where both AC
integrands are plotted along λ for these parameters, we
observe that the MP AC integrand remains always above
the DFT one.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we have calculated the Møller-Plesset
(MP) and the density-fixed (DFT) adiabatic connection
for the asymmetric Hubbard dimer. The Hamiltonian of
this model is fully determined by only two parameters, e.g.,
interaction strength and external potential (or interaction
strength and site occupation), allowing one to investigate
the two adiabatic connections systematically at different
correlation regimes. The main result we report is that,
while the DFT adiabatic connection integrand appears
to be convex for any value of the parameters {U,∆v} (in

-20 -10 0 10 20
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U=10

FIG. 6: Strong-interaction limit as a function of the
external potential, W̃∞ (∆v) of the MP (dashed) and of
the DFT (solid) adiabatic connections.
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λ

FIG. 7: Example of U and ∆v parameters for which
WKS
∞ < WHF

∞ .

line with expectations), the MP integrand shows a double
change of curvature for a continuous range of ∆v, at any
given U > 0. Since the Hubbard dimer is often consid-
ered as a prototype for a stretched diatomic molecule,
our finding might signal the presence of such previously
unexpected behaviour also in molecular systems. We have
argued that the external potential contribution to EHF

c

(V HF
c ), which is absent in EKS

c , may be responsible for
the extra flexibility of the MP adiabatic connection over
the DFT one, and we have derived an inequality between
the MP2 and GL2 correlation energies [eq (52)]. We have
calculated the accuracy predictor based on λext of eq (58)
in the complete site-occupation range (0 ≤ ∆n < 2) and
contrasted it with the relative error corresponding to the
MP2/GL2 correlation energies (Figure 3). For the MP
adiabatic connection, we have shown that the derivative
of the site-occupation with respect to λ is zero around
the HF density, for any {U,∆v} pair (section III C).
Finally, we have characterised the strong-interaction

limit in both adiabatic connections for our model. While
the asymptotic MP wave function, ΨHF

∞ , is simply the
symmetry-adapted state with one particle on each site,
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the DFT asymptotic state must mix in the state with two-
particles on the same site as well, with a coefficient deter-
mined by the density constraint [eq (66)]. The inequality
relating the asymptotic adiabatic connection integrands,
WHF
∞ and WKS

∞ , that holds for a given density in real-
space [eq (30)] has been translated in the lattice setting
[eq (75)], and the two quantities have been compared also
for a given external potential (see Figure 6).
As the double change of curvature is an important

element to keep in mind in the use of adiabatic connec-
tion interpolation methods, a possible next step could
be to calculate the MP adiabatic connection for the H2

molecule at large internuclear distances to verify whether
this feature is present also in actual molecular systems
(other models, such as the Moshinsky atom58 may be
used). Constructing the MP adiabatic connection inte-
grand for the UHF reference state for the asymmetric
Hubbard dimer could also shed some light on the origin
of this feature.

Another extension of this work, in the spirit of develop-
ing functional approximations that use the HF density as
reference, may be to construct a λ-dependent local density
approximation from Quantum Monte Carlo data for the
uniform electron gas along the MP adiabatic connection.
Such data could also reveal whether the double change
of curvature and/or the behaviour of the λ-dependent
density being flat around the HF density [eq (60)] are
encountered in the uniform electron gas.
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