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ABSTRACT
Warm dense matter is a highly energetic phase characterized by strong correlations, thermal effects, and quantum mechanical elec-
trons. Thermal density functional theory is commonly used in simulations of this challenging phase, driving the development of
temperature-dependent approximations to the exchange–correlation free energy. Approaches using the adiabatic connection formula are
well known at zero temperature and have been recently leveraged at non-zero temperatures as well. In this work, a generalized ther-
mal adiabatic connection (GTAC) formula is proposed, introducing a fictitious temperature parameter. This allows extraction of the
exchange–correlation entropy SXC using simulated interaction strength scaling. This procedure uses a Hellmann–Feynman approach to
express the exchange–correlation entropy in terms of a temperature- and interaction strength-dependent exchange–correlation potential
energy. In addition, analysis of SXC as a function of interaction strength suggests new forms for approximations, and GTAC itself offers a new
framework for exploring both the exact and approximate interplay of temperature, density, and interaction strength across a wide range of
conditions.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0196650

I. INTRODUCTION

Warm dense matter (WDM) is a highly energetic phase that
exists within the interiors of giant planets and in the atmospheres of
white dwarf stars.1–3 WDM is also generated experimentally on the
path to fusion ignition at flagship facilities including Lawrence Liv-
ermore National Laboratory’s NIF and Sandia National Laboratory’s
Z Machine.4–10 The experimental study of WDM has been accel-
erated by the commission of high-energy short-pulse laser sys-
tems such as the Omega Laser Facility at the Laboratory for Laser
Energetics.11–18 Simulations19–21 provide key information for both
the design of WDM experiments and the analysis of their results,
with DFT’s balance of accuracy and efficiency driving its wide-
spread use in various forms. Thermal density functional theory
(DFT)22–24 is commonly used to model this challenging phase and
is considered the best practice for predictive WDM and high-
energy density science (HEDS) calculations,25–33 often used to drive
ab initio molecular dynamics (AIMD).

Accurate free-energy density functionals representative of the
state conditions are necessary for reliable predictions of WDM
properties34 and for other systems in which temperature effects
are important.35 There are currently only a few approximate
free-energy exchange–correlation (XC) functionals,12,15,34,36–40 and
ground-state exchange–correlation functionals are employed with
thermally weighted densities in almost all AIMD HEDS simulations.
Insights into the construction of accurate temperature-dependent
functional approximations are at times informed by the growing
list of temperature-dependent exact constraints and analytical tools,
such as the adiabatic connection.

The adiabatic connection41–43 gives an exact expression for
the ground-state exchange–correlation energy in terms of an inte-
grand based on the fluctuation-dissipation theorem. The relation-
ship described by the adiabatic connection formula (ACF) allows
us to make a connection between the adiabatic connection and the
exchange–correlation energy. Integration over coupling constant λ
from λ = 0 to λ = 1 smoothly connects the fictitious non-interacting
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reference system at λ = 0 to the physical interacting system of
interest at λ = 1.

The finite-temperature adiabatic connection formula
(FTACF)44,45 introduces temperature dependence into the tra-
ditional AC integrand and was used to analyze an accurate,
fully ab initio parameterization39 of the exchange–correlation
free energy per electron at WDM conditions.46 The generalized
thermal adiabatic connection (GTAC) presented here generalizes
the true FTACF to include variations in interaction strength and
fictitious temperature, providing new pathways for constructing
exchange–correlation approximations.

One of the most notorious complications of thermal DFT is the
shift in interest from energy components to free energy components.
This shift is due to an entropic term, not only in the large-magnitude,
non-interacting terms of the Kohn–Sham formalism but also in the
exchange–correlation. Although progress has been made in devel-
oping temperature-dependent exchange–correlation approxima-
tions, many DFT calculations still neglect the exchange–correlation
entropy contribution in their practical calculations. For some
researchers, this is due to the absence of exchange–correlation
entropy approximations that are consistent with their use of
ground-state approximations evaluated on thermal densities.
Regardless of the root cause, examination of this compo-
nent of the exchange–correlation free energy has established
its importance.47–50 Formal analyses of the exchange–correlation
entropy, as well as its relationship to the so-called zero-temperature
approximation48 and the often-substituted non-interacting entropy,
can provide an avenue toward correction of this oversight in WDM
simulations and beyond.

In this work, we will define the form of a generalized thermal
adiabatic connection. The generalized form chosen allows variation
of both interaction strength and a fictitious temperature, altering
both the single-particle eigenstates and the occupations of those
states, in addition to changing the coupling constant in a way consis-
tent with defining this fictitious temperature as a thermal parameter.
This GTAC approach is then demonstrated using known param-
eterizations of the exchange–correlation free energy per particle
of the uniform gas, from which we extract approximations to the
exchange–correlation entropy. We close with analysis of these inter-
action strength-dependent SXC curves and discuss future directions
for GTAC.

II. BACKGROUND
A. Kohn–Sham DFT

Hohenberg and Kohn provided the basis for DFT,22 showing
that if the exact ground-state density of a many-body interacting
system is known, then the ground-state energy can be determined
exactly,

E[n(r)] ≡ min
n
{∫ dr v(r)n(r) + F[n(r)]}, (1)

where v(r) is the external potential, or system-dependent piece,
and F[n(r)] is the universal functional, or system-independent
piece consisting of the kinetic and electron–electron interaction
energies,

F[n(r)] = T[n(r)] + Vee[n(r)]. (2)

Kohn and Sham provided the framework for the practical
implementation of DFT.24 The KS scheme begins with an imaginary
system of non-interacting electrons that have the same density as
the interacting problem. The electrons are embedded in a potential
vS that causes these aloof, non-interacting electrons to imitate the
true interacting system, driving a much more computationally effi-
cient process for finding the ground-state density and corresponding
ground-state energy. Since the electrons are non-interacting, the
coordinates decouple and we may write the wavefunction as a
product of single-particle orbitals satisfying

{−
1
2
∇

2
+ vS(r)}ϕi(r) = εiϕi(r), (3)

where εi are the KS eigenvalues, ϕi are the corresponding KS orbitals
yielding density n(r) = ∑N

i=1 ∣ϕi(r)∣2, and vS is the KS potential
(which is unique, by the HK theorem). The KS Slater determinant
is not considered an approximation to the true wavefunction but is a
fundamental property of any electronic system uniquely determined
by the electronic density.24,51 It is this non-interacting wavefunction,
Φ, that minimizes the kinetic energy to give the kinetic energy of the
non-interacting electrons,

TS[n] = min
Φ→n
⟨Φ∣T̂∣Φ⟩. (4)

The subscript “s” will be used throughout this work to indicate
non-interacting quantities. In terms of the non-interacting kinetic
energy, Eq. (2) becomes

F[n(r)] = TS[n(r)] + Vee[n(r)] +UH[n(r)] + EXC[n(r)], (5)

where UH is the classical electrostatic repulsion, or Hartree
energy, and EXC is the exchange–correlation (XC) energy. The
exchange–correlation energy collects the remainder of interactions
not captured by the Hartree energy, such as the kinetic correlation,

TC = T − TS, (6)

or the difference between the exact kinetic energy and the non-
interacting kinetic energy. Kohn–Sham DFT is exact as long as we
have the exact exchange–correlation functional for arbitrary phys-
ical systems of interest. Unfortunately, this is not the case for the
vast majority of systems, and approximations must be employed for
practical calculations.

B. Thermal DFT
DFT can be extended to finite temperatures by generalizing the

Hohenberg–Kohn theorems and Kohn–Sham equations to thermal
systems. Working within the grand canonical ensemble, Mermin
generalized the HK theorems to equilibrium systems at finite tem-
peratures constrained to fixed temperature and chemical potential.23

The grand canonical potential of the system is written as

Ω̂ = Ĥ − τŜ − μN̂, (7)

where Ĥ is the ground-state Hamiltonian, τ is the absolute tem-
perature in Hartree units, μ is the chemical potential, N̂ is the
particle-number operator, and Ŝ is the entropy operator,

Ŝ = −kB ln Γ̂. (8)
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The statistical operator Γ̂ is

Γ̂ =∑
N,i

wN,i∣ΨN,i⟩⟨ΨN,i∣, (9)

where ∣ΨN,i⟩ are the orthonormal N-particle states and wN,i are
the normalized statistical weights satisfying ∑N,i wN,i = 1. The sta-
tistical operator yields the thermally weighted, equilibrium density.
The Mermin–Kohn–Sham (MKS) equations,23,24 which resemble
the ground-state KS equations, but with temperature-dependent
eigenstates, eigenvalues, and effective potential, yield the MKS
density,

nτ
(r) =∑

i
f τ

i ∣ϕ
τ
i (r)∣

2, (10)

with ϕτ
i (r) equal to the ith eigenstate and f τ

i equal to the state’s cor-
responding Fermi occupation. The MKS density is equal to the exact
equilibrium density at temperature τ by definition.

To define the exchange–correlation free energy, we decompose
the universal functional and write the free energy as52

Aτ
= TS − τSS +UH + Aτ

XC + Vext. (11)

Here, TS is the non-interacting kinetic energy, SS is the non-
interacting entropy, UH is the classical electrostatic repulsion,
and Vext is the external potential.53 The temperature-dependent
exchange–correlation free energy by definition is

Aτ
XC = (T − TS) − τ(S − SS) + (Vee −UH), (12)

where T[n] and S[n] are the interacting kinetic energy and entropy
and Vee[n] is the electron–electron interaction energy.

III. RESULTS
In this section, we propose a generalized thermal adiabatic

connection and show how to use this form to extract expressions
for SXC.

A. The generalized thermal adiabatic connection
We begin by introducing a generalized thermal adiabatic con-

nection using a somewhat familiar54 generalized electron–electron
interaction operator,

V̂ee(rN , λ, τ̃) =∑
i≠j

ν(∣ri − rj ∣, λ, τ̃), (13)

where λ is a scaling factor similar to the linear scaling fac-
tor in the traditional adiabatic connection formula, and τ̃ is
a more complicated parameter taking the form of a fictitious
temperature. This definition of a fictitious temperature demands
scaling of the entropy, as well as maintenance of known tied
coordinate–temperature–interaction strength scaling relationships.
In contrast to other choices one might make, here we are using
a form that mimics the original FT adiabatic connection for-
mula, connecting the non-interacting and exact systems. Here, we
generalize to allow thermal-like occupations at smoothly varying
“temperatures.” In some ways, this appears to mimic the zero-
temperature generalized KS framework for hybrid functionals,55 in

that there are two different scaling parameters, but our choice here
maintains the KS framework for all values of τ̃ and λ, allowing for the
smooth and gradual scaling of the interaction strength and the asso-
ciated minimizing ensemble. Scaling conditions present in the true
FT system are maintained, as described in Sec. III C. As will become
obvious below, this formalism can also be described outside of a gen-
eralized KS-like framework, by straightforward application of the
fundamental theorem of calculus. In this way, we simultaneously
connect the zero-temperature system and the truly thermalized sys-
tem across the range of non-interacting to fully interacting electronic
systems, via a τ̃- and λ-dependent effective potential.

Following the usual path for the FT ACF, we can then define
the universal functional,

Fτ̃ ,λ
[n, ντ̃ ,λ

] = F[n, ν(∣ri − rj ∣, λ, τ̃)]

= min
Γ→n

Tr Γ̂{T̂ − τ̃Ŝ + V̂ee(rN , λ, τ̃)}

=∑
N
∑

i
wN,i⟨Ψτ̃,λ

N,i∣T̂ − τ̃Ŝ + V̂ee(rN , λ, τ̃)∣Ψτ̃,λ
N,i⟩. (14)

This form of the electron–electron interaction not only alters the
strength of interaction via the coupling constant but also gives the
interaction potential functional more flexibility by letting it fluctu-
ate away from the physical temperature. All of these fluctuations are
captured in the exchange–correlation free energy, similar to those
generated by the coupling constant alone in the traditional adiabatic
connection.

The effective potential above coincides with the true KS poten-
tial for the system of interest only at τ̃ = τ and λ = 0. To ensure this,
we can explicitly define our effective potential at specific interaction
strengths,

ν(∣ri − rj ∣, λ = 0, τ̃) = 0 (15)

and

ν(∣ri − rj ∣, λ = 1, τ̃) =
1

∣ri − rj ∣
. (16)

In this way, we can write the universal functional in terms of non-
interacting KS quantities,

F[n, ν(∣ri − rj ∣, λ = 0, τ̃)] = Fτ̃
S[n, ντ̃ ,λ

]

= TS[n] − τ̃SS[n]

= K τ̃
S[n]. (17)

The KS functional is written for the λ = 0 case, where the
electron–electron repulsion has been turned off, with the density
held fixed by the single-body KS potential. In terms of the interacting
Mermin functional,

F[n, ν(∣ri − rj ∣, λ = 1, τ̃)] = Fτ̃ ,λ=1
[n, ντ̃ ,λ

]

= K τ̃
[n] + Vee[n]. (18)

Now we can define the exchange–correlation free energy in terms of
(18) and KS system components,
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Aτ
XC[n] = (K

τ
[n] + Vee[n]) − (Kτ

S[n] +UH[n])

= Fτ
[n] − Fτ,λ=0

[n] −UH[n]

= ∫

1

0
dλ

dFτ,λ
[n, ντ,λ

]

dλ
−UH[n]. (19)

Rewriting in the style of the Fundamental Theorem of Calculus (after
adding and subtracting Fτ̃ =0,λ

[n, ντ,λ
]),

Aτ
XC[n] = ∫

1

0
dλ

d
dλ
{Fτ̃ =τ,λ

[n, vτ̃ ,λ
] − Fτ̃ =0,λ

[n, vτ̃ ,λ
]

+ Fτ̃ =0,λ
[n, ντ̃ ,λ

]} −UH[n], (20)

we can rewrite by writing in a τ̃ integral form and pulling the λ
derivative outside of the temperature integral,

Aτ
XC[n] = ∫

1

0
dλ

d
dλ
{(∫

τ

0
dτ̃

dFτ̃ ,λ
[n, ντ̃ ,λ

]

dτ̃
∣

λ
)

+ Fτ̃ =0,λ
[n, ντ̃ ,λ

]} −UH[n]. (21)

Since the density is held fixed, ∫
1

0 dλUH[n] = UH[n], and we find

Aτ
XC[n] = ∫

1

0
dλ

d
dλ
{(∫

τ

0
dτ̃∑

N
∑

i
wN,i

× ⟨Ψτ̃,λ
N,i∣

dFτ̃ ,λ
[n, ντ̃ ,λ

]

dτ̃
∣Ψτ̃,λ

N,i⟩) −UH[n]}

+ ∫

1

0
dλ

Uτ=0,λ
XC [n]

λ
, (22)

where the last term is the ground-state adiabatic connection. Now
rewriting dFτ̃ ,λ

[n,ντ̃ ,λ
]

dτ̃ = d
dτ (T̂ − τŜ + V̂ee),

Aτ
XC[n] = ∫

1

0
dλ

d
dλ
{(∫

τ

0
dτ̃ ∑

N,i
wN,i

× ⟨Ψτ̃,λ
N,i∣−Ŝ +

∂V̂ee(rN, λ, τ̃)
∂τ̃

∣Ψτ̃,λ
N,i⟩) −UH[n]}

+ ∫

1

0
dλ

Uτ=0,λ
XC [n]

λ
. (23)

Since the eigenstates Ψτ̃,λ
N,i are variational extrema, dΨτ̃,λ

N,i
dλ contributions

vanish. This implicit dependence on λ is the only λ-dependence of
Sτ,λ
[n]. Thus, dSτ,λ

[n]
dλ also vanishes, and we have

Aτ
XC[n] = ∫

1

0
dλ∫

τ

0
dτ̃

d
dλ ∑N,i

wN,i⟨Ψτ̃,λ
N,i∣

∂V̂ee(rN, λ, τ̃)
∂τ̃

∣Ψτ̃,λ
N,i⟩

− ∫

1

0
dλ

dUH[n]
dλ

+ ∫

1

0
dλ

Uτ=0,λ
XC [n]

λ
. (24)

Identifying the final term as the zero-temperature exchange–
correlation energy expressed in the traditional ACF, we can now
write the exchange–correlation free energy in the GTAC formalism,

here with the ground-state exchange–correlation evaluated on the
finite-temperature density as its reference point,

Aτ
XC[n] = EXC[n] + ∫

1

0
dλ∫

τ

0
dτ̃

∂

∂τ̃
U τ̃,λ

XC[n]
λ

. (25)

B. Extraction of exchange–correlation entropy
The FTAC46 can be rewritten as a partial differential of the

exchange–correlation free energy with respect to λ and again
rewritten in terms of an integral over fictitious temperature,

Aτ
XC[n] = ∫

1

0
dλ

∂Aτ
XC[n]
∂λ

= ∫

1

0
dλ

∂

∂λ∫
τ

0
dτ̃

∂Aτ̃
XC[n]
∂τ̃

. (26)

Via Leibniz’s rule, we can switch the ordering of the integral and
derivative for this definite integral,

∫

1

0
dλ∫

τ

0
dτ̃

∂2Aτ̃,λ
XC[n]

∂λ∂τ̃
. (27)

We thus obtain an object that is a mixed partial differential with
respect to temperature and interaction strength. The explicit tem-
perature dependence of this object is unknown for real, arbitrary
systems outside of limiting conditions, but we can take advantage
of the fact that the mixed partial derivatives are symmetric by virtue
of assumed continuity, which must be true for the mixed partial in
(28) to be integrable,

∂2Aτ
XC[n]

∂τ∂λ
=
∂2Aτ

XC[n]
∂λ∂τ

. (28)

This symmetry is mirrored by Maxwell-style equations,56

(
∂Uτ,λ

XC[n]
∂τ

)

λ
= −λ(

∂Sτ,λ
XC[n]
∂λ

)

τ
, (29)

which relate the temperature-dependent exchange–correlation
potential to the lambda-dependent exchange–correlation entropy.
Uτ,λ

XC, or the potential XC, comes from the FTAC integrand [Eq. (39)],
Wτ,λ

XC = Uτ,λ
XC/λ. The exchange–correlation entropy can be extracted

by taking the temperature derivative of Uτ,λ
XC and integrating over λ

for a given temperature τ,

Sτ
XC[n] = −∫

1

0
dλ

1
λ
∂Uτ,λ

XC[n]
∂τ

. (30)

This was done numerically for the corrected KSDT1437 and
GDSM1739 parameterizations of the exchange–correlation free
energy of the UEG at WDM conditions. Figure 1 shows the
exchange–correlation entropy obtained for the GDSM17 parameter-
ization for an rS value of 1 as τ varies from 0 to 1 Ha. Also shown in
Fig. 1 is the exchange–correlation entropy obtained from the more
familiar thermodynamic relationship,

Sτ
XC[n] = −

∂Aτ
XC[n]
∂τ

. (31)

This comparison serves as verification that our GTAC extraction
process using simulated interaction strength scaling and numerical
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FIG. 1. The exchange–correlation entropy obtained from expressions (30) and (31)
for the GDSM17 parameterization and compared for rS = 1 and τ → 1 Ha.

integration yields the correct SXC for the FT UEG. In this way, we
can be confident that the features we see in Sec. III C are the result of
the mathematical objects and not merely artifacts of our extraction
technique.

C. Numerical demonstrations
Tied coordinate–temperature–interaction strength scal-

ing was applied to two well-known parameterized functions
of the exchange–correlation free energy of the UEG at WDM
conditions34,39 to construct the proper form of the FTAC integrand.
Temperature and interaction strength effects were then obtained
by allowing the FTAC integrand to vary over a range of τ and λ,
creating a 3D object that varies in both temperature and interaction
strength. Numerical differentiation was performed on the data
to obtain the temperature dependence of the FTAC integrand
extracted from each parameterization. Next, numerical integration
was applied to obtain the exchange–correlation entropy for a given
temperature and value of rS. All plots and numerical work were
performed using Mathematica version 13.3; sample notebooks are
available upon request.

1. Simulated interaction strength scaling
While quantum mechanical operators scale in a simple man-

ner, the scaling of density functionals is not as straightforward. A
useful relationship in DFT that is commonly taken advantage of is
the relationship between coordinate scaling and interaction strength
scaling.51,57–59 When the length scale of the system is altered by a
factor of γ, the density of the system is expressed as

nγ(r) = γ3n(γr), (32)

where the scaling factor out front preserves normalization of the
system. This scaling of the density causes the non-interacting func-
tionals into which they are input to exhibit power law scaling
at zero temperature. At finite temperature, these non-interacting
functionals require scaling of the temperature to maintain these
scaling relationships. At both zero and finite temperatures, intro-
ducing electron–electron interaction into the picture, such as
when examining functionals with correlation components, one
must also scale the interaction strength to achieve such neat
and tidy power law scaling. This leads to the aforementioned

tied coordinate–temperature–interaction strength scaling within
thermal DFT.

In the case of the UEG, our focus in this work, interaction
strength scaling of the density functions describing the system can
be expressed in terms of temperature and density scaling, in which
γ→ 1

λ . For example, the exchange–correlation free energy at interac-
tion strength λ and absolute temperature τ is written in terms of the
same function, evaluated at a scaled density and scaled temperature,
scaled quadratically overall,44

aτ,λ
XC(n) = λ2aτ/λ2

XC (n1/λ). (33)

The exchange free energy, expressed below in terms of the
Wigner–Seitz radius, rS, can be extracted from the exchange–
correlation free energy by scaling to the high-density limit of the
thermal UEG,

aτ
X(rS) = lim

γ→∞

aγ2τ
XC(

rS
γ )

γ
. (34)

The correlation free energy per particle is obtained by subtracting
off the exchange component of the exchange–correlation free energy
per particle,

aτ
C(rS) = aτ

XC(rS) − aτ
X(rS). (35)

Next, we construct the correlation component of the FTAC inte-
grand by extracting the potential contribution from the correlation
free energy per particle,60

uτ
C(

rS

γ
) = −γ

∂aγ2τ
C (

rS
γ )

∂γ
+ 2aγ2τ

C (
rS

γ
), (36)

which comes from the ground-state relationship between the kinetic
correlation, Tc, and the correlation energy,

Tc[n] = −Ec[nγ] + γ
dEc[nγ]

dγ
. (37)

We can extract Uc from Ec[nγ], since Uc = Ec − Tc, leading to

Uc[nγ] = 2Ec[nγ] − γ
dEc[nγ]

dγ
. (38)

Using the definition of the FTAC integrand for the uniform gas
in terms of the potential contribution, Uc, and the relationship for
extracting ax, then converting into coupling-constant relations via
(33), we obtain the FTAC integrand,

Wτ,λ
XC(rS) = λuτ/λ2

C (λrS) + lim
γ→∞

aγ2τ
XC(rS/γ)

γ
. (39)

2. Results and discussion
The partial derivative of the exchange–correlation potential

energy with respect to temperature was obtained numerically and is
shown for two well-known parameterizations of the XC free energy
of the warm, dense UEG in Figs. 2 and 3. The 2D plots provide
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FIG. 2. The temperature derivative of the exchange–correlation potential energy
obtained from the corrected KSDT14 parameterization34 is shown for rS = 1,
0 ≤ τ ≤ 1 Ha, and 0 ≤ λ ≤ 1.

FIG. 3. The temperature derivative of the exchange–correlation potential energy
obtained from the GDSM17 parameterization39 is shown for rS = 1, 0 ≤ τ ≤ 1 Ha,
and 0 ≤ λ ≤ 1.

details on how the exchange–correlation potential energy varies with
temperature.

The blue regions in both figures indicate negative values of
the temperature derivative and appear localized around tempera-
tures below one-third of the Fermi energy and interaction strengths
above one-third of the full interaction strength. This indicates
that the potential piece of the exchange–correlation decreases with
respect to temperature in low-temperature regimes of partially to
fully interacting electrons. For the parameters tested, the temper-
ature derivative remains positive regardless of the temperature for
non-interacting and partially interacting (λ ≤ 0.3) electrons.

Figure 3 shows the temperature derivative of the
exchange–correlation potential energy for an rS value of 1
obtained from the highly optimized GDSM17 parameterization.
The negative values remain in the τ ≤ 0.3 Ha region but appear
more localized at interaction strengths above 0.5, or half, the full
interaction strength compared to the temperature derivative plotted
in Fig. 2.

The temperature derivative of the exchange–correlation poten-
tial energy obtained from the GDSM17 parameterization is inves-
tigated for interaction strengths beyond the physical interaction
strength (λ = 1) in Fig. 4 for rS = 1 and 0 ≤ τ ≤ 1 Ha. Taking λ
beyond 1 reveals that for τ ≈ 0 Ha, the temperature derivative
of the exchange–correlation potential eventually becomes posi-
tive again in the λ ≈ 8.6 region. The temperature derivative in
Fig. 4 reaches a minimum value of −0.089 and a maximum value
of 0.085.

The temperature derivative of the exchange–correlation
potential energy obtained from the corrected KSDT14 and
GDSM17 parameterizations was then used to calculate the
exchange–correlation entropy via (30). Temperature dependence of
the energetic contribution to the overall exchange–correlation free
energy, τSxc, is shown in Fig. 5 for three different densities.

The maximum magnitudes reached by the entropy contribu-
tions to the XC free energy and the corresponding densities and
temperatures at which these maxima occur are compared for the two
parameterizations in Table I.

What is not readily evident in Fig. 5 is that at high-enough
temperatures, the rS = 0.5 and rS = 1 curves eventually mimic the
qualitative behavior exhibited by the rS = 2 curves for 0 ≤ τ ≤ 1 Ha.
For the lower values of rS, which correspond to higher densities, the
largest magnitude of the exchange–correlation entropy is reached
at higher temperatures. For example, the exchange–correlation
entropy curves plotted for rS = 1 in Fig. 6 reach a maximum magni-
tude at τ ≈ 2.6 Ha, while the curves plotted for rS = 0.5 in Fig. 7 reach

FIG. 4. The temperature derivative of the exchange–correlation potential
energy obtained from the GDSM17 parameterization39 is taken beyond phys-
ical interaction strength (λ = 1) and shown for rS = 1, 0 ≤ τ ≤ 1 Ha, and
0 ≤ λ ≤ 10.
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FIG. 5. The energetic contributions, τSxc , obtained from the GDSM17 and cor-
rected KSDT14 parameterizations are shown for rS = 0.5, 1, 2 and τ → 1 Ha. The
behavior exhibited by the rS = 2 curves is mimicked by the other two rS values,
but at higher τ.

TABLE I. The maximum magnitude of the entropic contribution (in Hartrees) to the
overall exchange–correlation free energy calculated at three densities is shown for
two parameterizations, GDSM17 and corrected KSDT14, along with the absolute tem-
perature τ at which each maximum occurs. Entropic values are converged with τ and
λ resolution to within 0.000X.

rs GDSM17 τ (Ha) CorrKSDT14 τ (Ha)

0.5 −0.2567 8.40 −0.2577 8.40
1.0 −0.1250 2.60 −0.1255 2.60
2.0 −0.0620 1.08 −0.0621 1.06
4.0 −0.0317 0.42 −0.0316 0.41

FIG. 6. The entropic contribution to the overall exchange–correlation free energy
is compared for the corrected KSDT14 and GDSM17 parameterizations for rS = 1
and τ → 5 Ha.

a maximum at τ ≈ 8.4 Ha. Maximum values of the entropic con-
tribution to the overall exchange–correlation free energy obtained
from the GDSM17 and corrected KSDT14 parameterizations are
compared in Table I.

As demonstrated by Fig. 8, the differences between curves
obtained from the corrected KSDT14 parameterization and the
corresponding curves obtained from the GDSM17 parameteriza-
tion are not artifacts of scaling but are due to differences in the
parameterizations themselves, as demonstrated by Fig. 1. These dif-
ferences are muted in practice because of the temperature scaling

FIG. 7. The entropic contribution to the overall exchange–correlation free energy is
compared for the corrected KSDT14 and GDSM17 parameterizations for rS = 0.5
and τ → 10 Ha.

FIG. 8. A difference plot comparing the exchange–correlation entropy obtained
from the GDSM17 and corrected KSDT14 parameterizations for rS = 0.5, 1, 2
as τ → 1 Ha. The small discrepancies in exchange–correlation entropy values
between the two parameterizations appear to oscillate in sign, indicating crossover
of the two parameterizations, which are larger at smaller values of τ and then
diminish as τ increases.

of entropy in the FT electronic Hamiltonian and the small over-
all value of the exchange–correlation free energy. However, these
differences may have larger effects when looking at scaling to the
strong interaction limit, as taking λ→∞ implies not only a move
toward infinitely strong interaction but also a concomitant approach
toward low density and low temperature, due to the λ2 scaling of
temperature and 1/λ scaling of the density that occurs. That said,
the bare exchange–correlation entropy values extracted using the
corrected KSDT14 parameterization agree to within 0.015 of the cor-
responding values obtained from the GDSM17 parameterization, as
demonstrated by the difference plot in Fig. 8.

IV. CONCLUSIONS
We have defined a generalized thermal adiabatic connection

that depends on a fictitious temperature as well as the coupling con-
stant, while maintaining the scaling relationships we know to be true
for the true temperature, coupling constant, and coordinate system.
By having Vee, and therefore Aτ

XC, scale with both coupling con-
stant λ and fictitious temperature τ̃, we are in effect scaling between
two temperature-referenced systems (that of a finite-temperature
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reference system and that at the true temperature τ). Since this is
accomplished via an ACF-type process, there are links to prior work
in thermal stitching61 we have yet to fully explore. This work used a
uniform gas aXC parameterization for a proof of principle in a sys-
tem with no variation in density, even implicitly with temperature,
so further work should include analysis of more complicated model
systems, such as the slowly varying gas.

In analyzing the conditions at which the extreme values of SXC
are achieved in Table II, it appears that the maximum magnitudes
occur at pairs of rS and τ loosely following, for n = [0, 1, 2],

rS = c33−n (40)

and

τ = 2n−1, (41)

with c being a small, positive constant. Since these points occur at
minimum values, this simple pattern may provide a simple form for
approximating the gradient of SXC as a function of λ and τ. Further
testing is needed to see if this pattern holds beyond these few test
points and if they hold beyond the uniform gas system being tested
here. Equivalent scaling with n is achieved when n = 2, suggest-
ing through the familiar tied temperature–coordinate–interaction
strength scaling relations that this form might be used as a sort of
exchange–correlation enhancement factor that preserves the scaling
of the exchange–correlation free energy per particle of the uniform
gas underlying certain approximate forms.

These initial investigations with GTAC also show that the
variation of the FTACF integrand with temperature shifts in char-
acter as we move to strong interaction. The regime characterized
by strong interaction, low temperature, and intermediate density
shows temperature dependence resembling that of low-temperature,
weak-interaction regimes, which may hint at dominance of strong
interaction effects over thermal effects. This is likely tempered by
certain high-density effects, but further tests are necessary to be sure.
Surely we will also see differences in non-uniform systems as well,
inviting comparison studies for the finite-temperature asymmetric
Hubbard dimer and other model systems. The current work points
toward a “sweet spot” of strong effects at moderate values, where
temperature, interaction strength, and density influences are all at
play. This is similar to what is seen in prior work on thermal DFT48

and zero-temperature DFT.62

In addition to this pathway of inquiry, work currently in
progress includes extracting consistent and approximate UXC

TABLE II. The maximum magnitude of the exchange–correlation entropy term calcu-
lated at three densities is shown for two parameterizations, GDSM17 and corrected
KSDT14, along with the absolute temperature τ at which each maximum occurs. The
maximum XC entropy is converged with τ and λ resolution to within 0.000X.

rs GDSM17 τ (Ha) CorrKSDT14 τ (Ha)

0.5 −0.0535 2.82 −0.0544 2.78
1.0 −0.0856 0.90 −0.0867 0.87
2.0 −0.1357 0.29 −0.1361 0.29
4.0 −0.2124 0.09 −0.2108 0.09

approximations using GTAC and applying GTAC analysis to gener-
alized gradient approximations. Next steps involve applying GTAC
within extended parameter regimes, such as more of those beyond
the physical interaction strength, and testing generated SXC approx-
imations in simulations of more realistically complex simulated
systems is soon to follow.
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