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Ensemble Density Functional Theory (EDFT) is a generalization of ground-state Density Functional Theory (GS DFT),
which is based on an exact formal theory of finite collections of a system’s ground and excited states. EDFT in various
forms has been shown to improve the accuracy of calculated energy level differences in isolated model systems, atoms,
and molecules, but it is not yet clear how EDFT could be used to calculate band gaps for periodic systems. We extend the
application of EDFT toward periodic systems by estimating the thermodynamic limit with increasingly large finite one-
dimensional “particle in a box” systems, which approach the uniform electron gas (UEG). Using ensemble-generalized
Hartree and Local Spin Density Approximation (LSDA) exchange-correlation functionals, we find that corrections go
to zero in the infinite limit, as expected for a metallic system. However, there is a correction to the effective mass,
with results from tri-ensembles similar to literature on 2D and 3D UEGs, indicating promise for non-trivial results
from EDFT on periodic systems. Singlet excitation energies are found to be positive, but triplet excitation energies are
sometimes negative (a triplet instability), pointing to deficiencies of the approximations.

I. INTRODUCTION

A well known difficulty with ground-state (GS) Density
Functional Theory (DFT) is the band gap problem, where
the difference between the highest occupied and lowest un-
occupied Kohn-Sham (KS) energy states is smaller than the
true band gap.1,2 There are several methods used to extend
GS DFT to excited states, including time-dependent DFT
(TDDFT)3–5 and the ∆SCF method.6–8 TDDFT has become
the standard method for calculating the excitation energies of
molecules, achieving accuracies comparable to quantities in
GS DFT.9–12 However, in its typical application within the
adiabatic approximation, TDDFT inadequately describes dou-
ble and multiple excitations,13 and struggles with periodic
systems. Typical approximations to the exchange-correlation
(XC) kernel fxc lack the correct long-range behavior, which
indeed goes goes to zero in the local-density approximation
(LDA).4,5,14–18 Similarly, the correction to excitation energies
provided by the ∆SCF method for standard XC approxima-
tions goes to zero in periodic systems,19,20 which some meth-
ods have been proposed to solve.21 The theory of ensemble
DFT (EDFT) is another DFT approach to excited states which
could be promising for periodic systems, but it remains to be
seen how the theory as formulated by Gross, Oliveira, and
Kohn22 can be properly formulated for such systems.

Like GS DFT, EDFT is based on a variational theorem. The
difference in the two theories is that while in GS DFT, the GS
energy is a functional of the GS density, in EDFT, the en-
semble energy is a functional of both the ensemble density
and a set of ensemble weights, providing access to excited-
state quantities.22–24 Excitation energies can, in theory, be ex-
tracted from the total ensemble energy, and EDFT can ac-
count for the discontinuous nature of the XC potential through
explicit dependence on weights.1,25–27 Thus EDFT offers a
non-perturbative alternative to TDDFT which can more easily

treat multiple- and charge-transfer excitations. Additionally,
EDFT can treat both the fundamental (charged)26 and opti-
cal (neutral)22 gaps of systems. Relatively accurate EDFT
calculations have been performed for small atoms,28,29 the
hydrogen molecule,30 for two electrons in boxes or in a 3D
harmonic well (Hooke’s atom),31 the asymmetric Hubbard
dimer,25,32,33 and for some molecules.34,35 However, devel-
oping the necessary weight-dependent functionals in order to
use EDFT is a complicated task that remains at an early stage
of development and limits EDFT’s application to a wider span
of systems.36–44 The key difficulty of EDFT for periodic sys-
tems is that the excited states of solids are a continuum of
states and as such cannot be modelled with existing EDFT ap-
proaches which construct the ensemble from a finite number
of individual states.22

In this paper, rather than studying a periodic system in
EDFT directly, we study EDFT by means of finite one-
dimensional (1D) systems approaching the thermodynamic
limit, performing DFT calculations in the open-source real-
space code Octopus.45,46 In section II A we introduce a 1D
system whose KS potential is a “particle in a box” (PIB). We
build ensembles for the system with the weighting scheme de-
scribed in section II B. We motivate our choice of weight-
dependent functionals in section II C and describe the multi-
plet structure and construction of many-electron densities for
our system in section II D. In sections II E and II F we outline
the necessity of studying systems in the approach to the ther-
modynamic limit rather than direct study of periodic systems
within EDFT. In section III, we describe our computational
methodology for calculations of first (triplet) and second (sin-
glet) excitation energies. Finally, in section IV, we discuss en-
semble corrections to excitation energies, a triplet instability
found from the bi-ensemble, and effective masses obtained in
the approach to the thermodynamic limit. We find non-trivial
renormalization of the effective masses with results from the
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tri-ensemble similar to the uniform electron gas in other di-
mensionalities, showing the promise of EDFT for describing
periodic systems.

II. THEORY

A. The 1D PIB Potential is the KS Potential

The PIB potential is defined as a free particle within the
confines of a box of length 2L, subject to an infinite potential
outside these boundaries:

V (x) =

{
0, −L < x < L,
∞, x ≤−L or x ≥ L.

(1)

The PIB is more readily adaptable to study in the thermody-
namic limit than atom-based models, and in the limit it be-
comes the uniform electron gas (UEG) which is a prototypical
model in electronic structure theory and is used as a simplified
model for the behavior of electrons in metals.47 The 1D UEG
is known from the Lieb-Mattis theorem48 to be a singlet at all
densities, which has also been found in quantum Monte Carlo
calculations.49 It is also expected to be metallic according to
Luttinger liquid theory.50,51 In this work, we set the KS po-
tential, vKS, equal to the PIB potential such that vKS(r) = 0
within the boundaries of the box. Setting vKS rather than vext
to the PIB potential allows us to determine the KS wavefunc-
tions and eigenvalues exactly, and bypasses the need to solve
for them self-consistently. A similar approach has been used
in studies of a model atom whose KS potential is 1/r.52 In the
thermodynamic limit, we obtain the UEG, whether we set vext
or vKS equal to the PIB potential. In this limit, the density is
constant, leading to a constant vHxc [ρ], which provides only
an overall offset to the eigenvalues and no difference in the
excitation energies.

Here we first discuss such a set-up in the context of GS
DFT, and then describe the construction of the ensemble in
section II B. In GS-DFT, the KS potential is defined as

vKS(r) = vext(r)+ e2
∫

ρ(r′)
|r− r′|

dx′+
δExc[ρ(r)]

δρ(r)
, (2)

where r = {x,ω} indicates both space and spin coordinates.
For simplicity, we limit our study to 1D, though a similar pro-
cedure could be followed for 2D or 3D. Here the first term
on the right is the external potential, the second term is the
Hartree potential (where e is the electron charge), and the third
term is the XC potential. The KS equations are:{

− h̄2

2m
∇

2 + vKS(r)
}

ϕ j(r) = ε jϕ j(r), (3)

where the set of spin-polarized wavefunctions {ϕ j}1≤ j≤∞ are
the lowest-energy solutions. The KS many-body wavefunc-
tion Ψ, generally assumed to be a single Slater determinant,
is built from {ϕ j}. Both {ϕ j} and their corresponding en-
ergies {ε j}1≤ j≤∞ are typically obtained iteratively from SCF
calculations, but in this case, because we have set vKS(r) = 0,

we know ε j exactly from the analytical solutions to the non-
interacting PIB problem:

εn =
n2π2h̄2

8meL2 , (4)

where me is the mass of an electron. For the same reason, we
know the wavefunctions solving equation (3) exactly, which
are defined by their quantum number n:

φn(x) =

√
1
L

sin
(

nπ

2L
x
)
, (n = 1,2, ...). (5)

From each spatial wavefunction, φ(x), one can form two
different orthonormal spin and space-dependent wavefunc-
tions by multiplying the spatial function by the up α(ω) or
down β (ω) spin function:53

ϕ(r) =


φ(x)α(ω)

or
φ(x)β (ω),

(6)

The density for a system of non-interacting particles is:

ρ(r) =
∞

∑
j=1

f j|ϕ j(r)|2, (7)

with occupations f j ∈ {0,1} to specify occupied and unoc-
cupied states. Up to two ϕ j may correspond to the same φn,
which is the case for a doubly occupied spatial state. Know-
ing the non-interacting density, the sum of the wavefunction
energies, the Hartree energy and an approximation to the XC
energy functional, the total interacting energy is obtained as47

E tot[ρ(r)] =
∞

∑
j

f jε j −EH [ρ(r)]−
∫
(vxc(ρ;r))ρ(r)dx

+Exc[ρ(r)], (8)

where δExc[ρ(r)]
δρ(r) = vxc. Equation (8) is exact if the XC func-

tional is known exactly.

B. Ensemble Density Functional Theory

EDFT as discussed here stems from Theophilou and Gi-
dopoulos’s work in 1987 which built ensembles from KS
states.54 This variational principle for equi-ensembles was
generalized to ensembles of monotonically decreasing, non-
equal weights by Gross-Oliveira-Kohn (GOK) in 1988.22 To
avoid confusion, we note that the theory of thermal “Mermin”
DFT,55 commonly used for periodic systems such as metals,
has been referred to as “ensemble DFT” also,56 but it is based
on a Fermi-Dirac thermal ensemble and thus is quite different
from GOK EDFT.

The ensemble-generalized form of equation (3) is the non-
interacting ensemble KS equation:{

−1
2

∇
2 + vw

KS[ρ
w](r)

}
ϕ

w
j (r) = ε

w
j ϕ

w
j (r), (9)
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where ϕw
j are the non-interacting single-particle wavefunc-

tions that reproduce the ensemble density, ρw(r). The KS
many-body wavefunctions {Ψw

m[ρ]}0≤m≤MI−1, assumed to be
Slater determinants or linear combinations of Slater determi-
nants, are built from {ϕ j(r)}1≤ j≤∞ having individual energies
ε j which are obtained from the ensemble KS equation, equa-
tion (9). Symmetry-adapted linear combinations of Slater de-
terminants may be used, as the conventional restriction to sin-
gle Slater determinants has been found to be overly restrictive
in EDFT.57 The ensemble-generalized form of equation (2) is:

vw
KS[ρ

w](r) = vext(r)+
δEw

Hxc[ρ
w]

δρw(r)
, (10)

and the ensemble functional for Hartree, exchange, and cor-
relation (HXC), Ew

Hxc, may be separated into its constituent
parts:

δEw
Hxc[ρ

w]

δρw(r)
=

∫
ρw(r′)
|r− r′|

dr′+
δEw

x [ρ
w]

δρw(r)
+

δEw
c [ρ

w]

δρw(r)
. (11)

While the single-particle wavefunctions {ϕw
j } and their cor-

responding energies {ε j} are calculated in the same way as in
the GS case presented in section II A, the ensemble density is
constructed in a different way than the GS equation (7):

ρ
w(r) =

MI−1

∑
m=0

wm

(
∞

∑
j=1

f m
j |ϕ j(r)|2

)
, (12)

where f m
j denotes the occupation of ϕ j(r) in the mth KS wave

function Ψw
m[ρ

w].41 I denotes the set of degenerate states (or
“multiplet”) with the highest energy in the ensemble. This set
can be equivalently referred to as the (MI − 1)th state, as we
consider an ensemble of MI (possibly degenerate) electronic
states each consisting of Ne electrons, numbered from m = 0
to MI − 1. Then, gI is the multiplicity of the Ith multiplet,
and MI is the total number of states up to and including the
Ith multiplet, MI = ∑

I
j=0 g j.22,41 I = 1 denotes a bi-ensemble,

and I = 2 denotes a tri-ensemble, as depicted in figure 1.
GOK ensembles must include all of each degenerate sub-

space to be well-defined. Each many-electron state’s energy
is denoted by Em=0 ≤ ... ≤ Em=MI−1, and the energy of the
mth KS state is

Em =
∞

∑
j=1

f m
j ε j, (13)

which can be obtained exactly in this case from equation
(4). Each state is assigned a weight wm from the set
{w} ≡ (wm=0, ...,wm=MI−1) of monotonically non-increasing
(wm=0 ≥ ...≥ wm=MI−1) weights obeying

MI−1

∑
m=0

wm = 1. (14)

For the GOK-I ensembles considered here, the weights are
defined as22

wm =

{
1−wgI
MI−gI

m < MI −gI ,

w m ≥ MI −gI ,
(15)

Figure 1. Diagram of the multiplet structure for the ensemble of
interacting particles for a PIB, obeying spin symmetry. I = 1 cor-
responds to the bi-ensemble, which includes up to m = 3 (1st mul-
tiplet). I = 2 corresponds to the tri-ensemble, which includes up to
m = 4 (2nd multiplet). The degeneracy of the highest multiplet in-
cluded in the ensemble is given by the corresponding value of gI , and
MI is the total number of states included in the Ith ensemble. The as-
signment of m’s within a multiplet are arbitrary.

where w ∈ [0,1/MI ], such that all states but those in the high-
est (Ith) multiplet have the same weight, and only the GOK
weight, w, is needed to define the weighting of the ensemble.
By definition, w= wMI−1. The total ensemble energy is22

E w[ρw(x)] =
MI−1

∑
m=0

Em −EH[ρ
w(r)]

−
∫ (

vXC,α(ρ
w
α ;r)

)
ρ

w
α (r)d

3r−
∫ (

vXC,β (ρ
w
β

;r)
)
ρ

w
β
(r)d3r

+ELDA
x [ρw(r)]+ELDA

c [ρw(r)]. (16)

The exact ensemble energy is obtained if the ensemble HXC
functional is known exactly.

By differentiating equation (16) with respect to w, one ob-
tains the excitation energy ΩI of multiplet I from the GS:33

ΩI = EI −E0 +
∂Ew

Hxc[ρ]

∂w

∣∣∣∣
ρ=ρw

. (17)

The third term on the right of equation (17) is the “ensemble
correction” to the non-interacting difference of energies be-
tween the Ith KS state and the GS from equation (13), EI−E0.

C. Approximations to Hartree, Exchange, and Correlation

The development of accurate weight-dependent density-
functional approximations (DFAs) for EDFT is an on-
going challenge. Existing ensemble approximations to
Ew

xc include the quasi-local-density approximation (qLDA)
functional,36,37 the “ghost”-corrected exact exchange (EXX)
functional,38,39 the exact ensemble exchange functional
(EEXX),40 a local system-dependent and excitation-specific
ensemble exchange functional for double-excitations (CC-
S),41 a universal weight-dependent local correlation func-
tional (eVWN5) based on finite UEGs,41 and the orbital-
dependent second-order perturbative approximation (PT2) for
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the ensemble correlation energy functional.42 As noted in all
the aforementioned works, ensemble HXC has special com-
plications beyond those of GS DFT, such as the consider-
ation that ensemble Hartree and exchange are not naturally
separated in EDFT.43 Though each of these approaches above
to approximating ensemble XC energies provides insight into
the necessary characteristics of ensemble DFAs, it is unclear
whether any of them are appropriate for periodic systems
since they were developed for localized systems. In this work,
for a first exploration of EDFT on periodic systems, we choose
a simple approximation based on a Local Spin Density Ap-
proximation (LSDA).

The “traditional” DFAs of GS DFT can be used for ensem-
bles by evaluating them on ensemble densities:

E trad
Hxc[ρ] = EHxc

[MI−1

∑
m=0

wmρm(r)
]
. (18)

This use of the ensemble density with GS DFAs, typically
only applied to Hartree and exchange, has been called “Ansatz
1.”43 The use of ensemble densities in “traditional” GS DFAs
results in fictitious interactions of ground- and excited-state
densities, or “ghost interaction errors” (GIEs), in both Hartree
and exchange which do not cancel each other.31,36,39,43,58 Ad-
ditionally, with this form of ensemble DFA, the derivatives in
equation (17) become zero, since the weight dependence is
within the ensemble density only. As such, nothing is learned
from application of EDFT in such an approximation. We in-
stead opt to use ensemble-generalized LSDA, in which we
build an ensemble average by evaluating the GS Hartree and
LSDA functionals on the density of each state in the ensemble
individually:

ELSDA
Hxc,w [ρ] =

MI−1

∑
m=0

wmELSDA
Hxc [ρm(r)], (19)

which has been called “Ansatz 2.”43 In this way, we ensure
the ensemble functionals to be weight-dependent, giving us
nonzero corrections in equation (17).

Derivatives of this equation with respect to w depend on the
weights defined in equation (15), which in turn are determined
by the multiplet structure and I, e.g., whether a bi-ensemble
or tri-ensemble is used (figure 1), and have the general form:

∂ELSDA,w
Hxc [ρ]

∂w

∣∣∣∣∣
ρ=ρw

=− gI

MI −gI

MI−gI−1

∑
m=0

EHxc[ρm(r)]

+
MI−1

∑
m=MI−gI

EHxc[ρm(r)]. (20)

Note a useful property: the sum of the coefficients of the MI
states is

− gI

MI −gI
(MI −gI)+(1)gI = 1−1 = 0. (21)

This property is essential allow the excitation energy be in-
tensive (size-consistent) as we approach the thermodynamic

limit, since individual total energy terms are extensive and
grow without bound. We note that the form of equation 20
neglects any implicit weight-dependence of the densities from
the fact that the derivative should be taken at constant density.

This definition of ensemble-generalized Hartree is GIE-
free.31 Though this choice avoids a significant source of GIE,
our current form of ensemble-generalized LSDA does intro-
duce some GIE from XC.43 We report results for ensemble
corrections which have been built using the weight-dependent
Hartree of equation (19), denoted by HXC, and also for the
case where there is no Hartree contribution to the correction,
denoted by XC, due to the “traditional” Hartree definition in
equation (18).

D. Densities of Ground and Excited States

Here we show explicitly the spin-polarized densities in-
volved in the ground and excited states which we use in our
EDFT calculations. All densities involved here include a con-
tribution from the closed shell,

ρclosed(r) =
Ne/2−1

∑
n=1

|φn(r)|2
(
|α(ω)|2 + |β (ω)|2

)
, (22)

and the ground-state density is

ρGS(r) = |φ1(x)|
(
|α(ω)|2 + |β (ω)|2

)
+ρclosed(r), (23)

where φ1 is the highest occupied state.
In the spin-polarized PIB system of even Ne, based on spin

symmetry, the system has a nondegenerate GS, a triplet first
excited state, and a singlet second excited state, as depicted in
figure 1. An odd number of Ne would result in a different mul-
tiplet structure, but we do not investigate that case here, since
odd/even distinctions should disappear in the thermodynamic
limit anyway. The density of the αα state (ms = 1) in the
triplet, obtained from its Slater determinant and then written
in terms of its constituent wavefunctions, is:

ραα(r) = |φ1(x)α(ω)|2 + |φ2(x)α(ω)|2 +ρclosed(r), (24)

where φ2 is the lowest unoccupied state, with reference to the
ground state. Then, for the ββ (ms = −1) state in the triplet,
we obtain a similar equation where the α spins are flipped to
β spins:

ρββ (r) = |φ1(x)β (ω)|2 + |φ2(x)β (ω)|2 +ρclosed(r). (25)

While ραα(r) ̸= ρββ (r), our approximations to the energy-
density functional, evaluated on these two densities, yields
the same numerical result for their energies as required by
symmetry, and is the result obtained from any LSDA. For the
ms = 0 excited states, we must use linear combinations of two
Slater determinants to obtain the density:

ραβ±βα(r) =
1
2

(
|φ1(x)α(ω)|2 + |φ1(x)β (ω)|2+

|φ2(x)α(ω)|2 + |φ2(x)β (ω)|2
)
+ρclosed(r). (26)
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Figure 2. Band structure of the free electron gas, shown with a dis-
crete set of 6 k-points in a Brillouin zone based on a periodic length
2L. Arrow depicts an excitation with ∆k > 0.

We obtain the same density for the symmetric triplet (+) and
antisymmetric singlet (−) sum of the two Slater determinants.
No pure density functional can tell the two states, having iden-
tical densities, apart, despite the fact that the triplet should be
degenerate with the other two triplet states.

We will consider later, in sections III C and III D, two ap-
proaches to treating the triplet energy. The first method, out-
lined in III D, is the symmetry-broken tri-ensemble, in which
the correct densities for each state in the triplet, obtained from
equations (24), (25), and (26), are used. Although Exc[ραα ]
and Exc[ρββ ] are equal, the energy Exc[ραβ+βα ] of the third
member of the triplet has a higher energy, with their difference
decreasing asymptotically towards 0 as Ne → ∞. To address
this issue, we have also considered the symmetry-enforced tri-
ensemble in section III C, in which we do not use the com-
puted value of E[ραβ+βα ] at all, and instead use the value of
E[ραα ] = E[ρββ ] to represent all three states, maintaining the
degeneracy of the KS states forming the spin triplet. Since
both the singlet and triplet (ms = 0) states have the same den-
sity, we write ραβ±βα in sections II E, III C, and III D to refer
to their shared density.

GOK ensemble theory requires that states are ordered based
on the energies of the interacting system, and that all states
from the GS up to and including the Ith multiplet are included
in the ensemble. It is not always practically feasible to be cer-
tain that there are no additional states lying between those we
have included in the system,41 but we work under the assump-
tion that we have included all states between the ground state
and Ith excited state, such that we have not violated the rules
of the GOK ensemble.

E. 1D Uniform Electron Gas

We first consider a possible way that a periodic system,
could be discretized to allow application of EDFT. Leaving
aside the question of whether such an approach is theoreti-
cally sound, we find that in the case of the UEG (the limit of
our model) corrections to the KS excitation energies are iden-
tically zero, demonstrating that alternate strategies are needed
in order to obtain non-trivial results.

We consider an infinite limit of our system in which the KS
potential is zero everywhere, and periodic boundary condi-
tions φ(x+2L) = φ(x) are imposed for an arbitrary repeating
cell of length 2L. The KS wavefunctions have the form

φk(x) =

√
1

2L
eikx, (27)

and the KS energies for such a 1D system are

E =
h̄2k2

2me
, (28)

as discussed further in section IV C.
This system has a continuous spectrum of states and, as

noted earlier, the GOK EDFT has been defined only for a dis-
crete spectrum. We artificially discretize by choosing a set of
k-points such as k = (n/3)(π/2L) where n = {0,±1,±2,3}.
This discretization is equivalent to construction of a “finite,
but topologically periodic system”, like a particle on a ring,59

such as one might construct to avoid the edge effects of our
finite PIBs. We consider an excitation with ∆k > 0, to keep
things simple and involve only one excited KS energy level –
while this bends the rules of the GOK EDFT by not assigning
the same weights to all of a degenerate set, it can be justi-
fied in a generalization in which states of different symmetry
(e.g. crystal momentum k) can be treated separately.60 With
the two KS energy levels, we obtain a singlet-triplet structure
which is the same as in our finite well with even Ne (Section
II A and figure 1). Filling the system with 2 electrons per cell
of 2L results in two electrons in the lowest k-point, as in figure
2. With two electrons per unit cell, moving an electron from
one k-point to the next represents exciting 1/2 of all electrons
in the periodic system. All of the ground- and excited-state
densities are constant; e.g. from equation (24) we obtain:

ραα(r) =
∣∣∣∣
√

1
2L

eik1x
α(ω)

∣∣∣∣2+ ∣∣∣∣
√

1
2L

eik2x
α(ω)

∣∣∣∣2 = 1
L
, (29)

where k2 = k1+∆k. We find the same result for the three states
which make up the triplet of the first excited state, equations
(26), (24), and (25), and for the GS. The energy correction, as
will be shown in Section III A, is

∂Ew
Hxc[ρ]

∂w

∣∣∣∣
ρ=ρw

=−3EHxc[ρGS]+EHxc[ραα ]

+EHxc[ρββ ]+EHxc[ραβ±βα ] = 0, (30)

where each density is identical, and the total correction goes
to zero because the coefficients in front of each energy term
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always sum to zero (equation (21)). Since the GOK ensemble
correction depends on the ensemble density defined in equa-
tion (12), and each state has the same density, it is not pos-
sible to obtain a non-zero correction from EDFT to the UEG
in this manner. Changing the number of electrons, number
of k-points, length of the box, or which excitation we calcu-
late (e.g. including ∆k < 0) would change the complexity for
this model, but not the basic conclusion. We instead study a
finite system which increases in size towards the thermody-
namic limit to gain information about the behavior of EDFT’s
correction as it approaches a periodic system.

F. Thermodynamic Limit of the Finite-Length Well

We increase the number of electrons in our system along
with the length of the box, holding the average density con-
stant:

Ne

2L
= 0.5 Å

−1
Ne,L → ∞. (31)

As Ne → ∞, a region of increasingly constant density be-
gins to form at the center of the box, with decreasing os-
cillations and decreasing edge regions. According to the
Wentzel–Kramers–Brillouin (WKB) Approximation, there
will always be a peak at the classical turning points,61 i.e.
the edges of the box. As both Ne and L approach infinity,
the density of the system becomes more uniform, with the
nonuniform edge regions decreasing in width. To quantify
this property (figure 3), we first find the height ρmax of the
highest peak within −L ≤ x ≤ 0. We average the values of
the peaks and troughs of the density at the center (x = 0)
to find the average uniform density ρuniform. We then de-
fine ∆ρmax = ρmax − ρuniform. Next, we consider an enve-
lope function that excludes the oscillations of the density by
linearly connecting the peaks of the density. We determine
the width ∆x of the region between the edge of the box and
the position at which the envelope has decreased to ∆ρmax/e
measured from ρuniform. We note that ∆x decreases not only
as a fraction of L but also in absolute terms, demonstrating
that our model becomes increasingly uniform with increasing
L and that edge effects become negligible (figure 4). In this
way, our model systems in the approach to the thermodynamic
limit can be used to study how EDFT performs in a uniform
periodic system.

III. COMPUTATIONAL METHODOLOGY

Octopus is uniquely suited for this work due to its ability
to define arbitrary potentials and therefore easily treat model
systems and 1D systems.45,46 In this work we use Octopus ver-
sion 11.4. In order to realize our condition of setting the KS
potential equal to the 1D finite well potential in Octopus, the
potential is set to zero within a finite domain determined by
L. The wavefunction is constrained to zero at the boundaries
of the box. We limit our system to an even number of elec-
trons Ne whose ratio to L is held fixed as in equation (31), and

Figure 3. The non-interacting ensemble densities for Ne = 20,
Ne = 50, and Ne = 150, with interpolation line (dashed) between
peaks. The maximum of the density within −L ≤ x ≤ 0 is ρmax. The
average density at the center of the box is shown as a dotted hori-
zontal line. The width of the edge region, ∆x, is defined as the width
from the edge of the box to the point at which the interpolation line
is ∆ρmax/e from the center peak-to-peak amplitude average, as de-
scribed in section II F. The width of ∆x spans a smaller portion of
the box as Ne increases.

Figure 4. Decreasing width of the edge regions of the density, with
increasing L. The average density is held constant to 0.5 Å−1 as in
equation (31). The right axis is the width of the region ∆x, and the
left axis is the percentage of the half-length of the box spanned by
∆x.
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consider its spin-polarized solutions obtained from the PIB
as in equations (5) and (7). The starting initial guess in the
Kohn-Sham equations are random wavefunctions. We used
the conjugate-gradients eigensolver with a tolerance of 10−6

eV, which can require up to 1000 eigensolver iterations, and
did not use a preconditioner. Eigensolver convergence was
difficult to achieve and we settled on this fixed density ratio,
grid, and the eigensolver to give adequate convergence be-

havior. The average density of 0.5 Å
−1

was used to achieve
eigensolver convergence since systems with the larger average

density of 1 Å
−1

were unable to be converged for all values
of Ne. A grid spacing of 0.01 Å is used for all calculations
in order to converge energy eigenvalues to within 0.05 eV of
the analytic solutions of the PIB. Though the KS eigenval-
ues and eigenfunctions can be obtained analytically, we use
the values obtained from Octopus for consistency in compar-
ing to the ensemble-generalized LSDA HXC values which we
obtain from Octopus.

For each choice of Ne, we first run a spin-polarized GS cal-
culation for independent particles in 1D, calculating Ne/2+1
states to include all the filled states plus one unoccupied state.
We then run a “one-shot” DFT calculation with the same value
of Ne, but occupations of the KS states for each state in the
ensemble are built based on f m

j of equation (12), which are
obtained from Slater determinants as outlined in section II D.
These calculations use fixed wavefunctions from the previous
independent-particles calculation, and provide EH, Ex, and Ec
for a density built from the given occupations.

Given the problematic nature of the Coulomb interaction in
1D, we describe the electron-electron interactions with the 1D
soft Coulomb potential, where we set the softening parameter,
a, to 1 Bohr radius (a0):

vsc(x) =
1√

x2 +a2
. (32)

We use the 1D LSDA exchange62 and correlation
functionals63 as implemented in libxc 4.3.4,64 which
were parametrized for this interaction and value of a.

A. Bi-ensemble: Symmetry-enforced

Starting from equation (19), the GOK weighting scheme
from equation (15), and the multiplet structure of figure 1A
with a choice of the bi-ensemble (I = 1, g1 = 3 and M1 = 4),
our weights are:

wm =

{
1−3w m < 1,
w m ≥ 1.

(33)

The corresponding excitation energy correction from equation
(20), as in equation (30) for the UEG, is

∂Ew
Hxc[ρ]

∂w

∣∣∣∣
ρ=ρw

=−3EHxc[ρGS]+EHxc[ραα ]

+EHxc[ρββ ]+EHxc[ραβ±βα ]. (34)

To use this expression directly would break the spin-symmetry
of the triplet, as noted in Section II D. We note that other
EDFT methods have avoided this symmetry-breaking issue
via approximations based on multi-determinant spin eigen-
states rather than just the density.31 To enforce spin symmetry,
we use the energy EHxc[ραα ] for all states in the triplet, sim-
plifying equation 34 to:

∂Ew
Hxc[ρ]

∂w

∣∣∣∣
ρ=ρw

=−3EHxc[ρGS]+3EHxc[ραα ]. (35)

Revisiting equation (17), it becomes apparent that the differ-
ence of KS energies EI −E0 can be reduced to a difference of
eigenvalues via equation (13):

EI −E0 =
∞

∑
j=1

f I
j ε j −

∞

∑
j=1

f 0
j ε j. (36)

This expression reduces to the same result for both the bi-
ensemble (I = 1) and, as needed later in sections III C and
III D, the tri-ensemble (I = 2) – that is, E2 −E0 = E1 −E0 =
εn=2−εn=1. To calculate the excitation energy ΩI of equation
(17), we still must calculate the third term, the derivative of
the HXC functional with respect to the weight. Combined
with equation (36), the first excitation energy from equation
(17), denoted Ωe

2 with ‘e’ for symmetry-enforced approach,
is:

Ω
e
1 = εn=2 − εn=1 −3EHxc[ρGS]+3EHxc[ραα ]. (37)

B. Bi-ensemble: Symmetry-broken

In a second alternative method, we do not enforce any sym-
metry, and only simplify equation (41) based on equalities that
are satisfied in practice by LSDA. We use EHxc[ραα ] for only
two states in the triplet. EHxc[ραβ±βα ] is then used for the
third state of the triplet, breaking the spin symmetry. The first
excitation energy from equation (17), denoted Ωb

2 with ‘b’ for
symmetry-broken approach, is calculated as:

Ω
b
1 = εn=2 − εn=1 −3EHxc[ρGS]+2EHxc[ραα ]

+EHxc[ραβ±βα ]. (38)

The difference between triplet energies from the symmetry-
enforced and symmetry-broken bi-ensembles, from equations
(37) and (38) is:

Ω
e
1 −Ω

b
1 = Exc[ραα ]−Exc[ραβ±βα ]. (39)

Because the Hartree term is spin-independent, its value is the
same when evaluated on ραα and ραβ±βα . For this reason, the
difference in corrected excitation energies obtained in equa-
tion (39) only has a contribution from XC, and is the same
whether an ensemble-generalized Hartree is used or not.
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(a) Symmetry-enforced bi-ensemble (b) Symmetry-broken bi-ensemble

(c) Flipped symmetry-enforced bi-ensemble (d) Flipped symmetry-broken bi-ensemble

Figure 5. Ensemble-corrected first excitation energies compared to KS energy differences for: (a) the triplet Ωe
1 of the symmetry-enforced

bi-ensemble described in section III A and by equation (37), where Ωe
1 (XC) has been scaled up by a factor of 5 for visibility; (b) the triplet Ωb

1
of the symmetry-broken bi-ensemble described in section III B and by equation (38); (c) the singlet Ω

flip,e
1 of the flipped symmetry-enforced

bi-ensemble, described in section IV A and by equation (46); and (d) the singlet Ω
flip,b
1 of the flipped symmetry-broken bi-ensemble, described

in section IV A and by equation (47). Insets show the relative ordering of the first excited state and ground state for each ensemble. The
labels ‘e’ and ‘b’ denote results from the symmetry-enforced and symmetry-broken ensembles. HXC denotes results with a weight-dependent
Hartree, while XC denotes the use of a “traditional” Hartree, as explained in section II C.

C. Tri-ensemble: Symmetry-enforced

We now consider a tri-ensemble, I = 2, based on figure 1. In
order to calculate the singlet energy, Ω2, we begin with equa-
tion (17). Knowing the difference of non-interacting energies
from the PIB, all that is left is to calculate the derivative of
EHxc. Given the multiplet structure of figure 1A with g2 = 1
and M2 = 5, we have weights

wm =

{
1−w

4 m < 4,
w m ≥ 4.

(40)

The excitation energy correction is:

∂Ew
Hxc[ρ]

∂w

∣∣∣∣
ρ=ρw

=−1
4
(EHxc[ρGS]+EHxc[ραα ]

+EHxc[ρββ ]+EHxc[ραβ+βα ])+EHxc[ραβ−βα ]. (41)

As done for the bi-ensemble in section III A, we again enforce
spin symmetry by using the energy EHxc[ραα ] for all states in
the triplet. The last term, representing the singlet, we write as
EHxc[ραβ±βα ]. The second excitation energy (i.e. the singlet),

then is calculated as:

Ω
e
2 = εn=2 − εn=1 −

1
4

EHxc[ρGS]−
3
4

EHxc[ραα ]+

EHxc[ραβ±βα ]. (42)

D. Tri-ensemble: Symmetry-broken

Using the symmetry-broken approach introduced in section
III B, we simplify equation (41) using EHxc[ραα ] for only two
states in the triplet. EHxc[ραβ±βα ] is then used for the third
state of the triplet and for the singlet state. The second excita-
tion energy then is calculated as:

Ω
b
2 = εn=2 − εn=1 −

1
4

EHxc[ρGS]−
1
2

EHxc[ραα ]

+
3
4

EHxc[ραβ±βα ]. (43)
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(a) Symmetry-enforced tri-ensemble (b) Symmetry-broken tri-ensemble

Figure 6. Energy of singlet states obtained as second excitation energies Ω2 from the tri-ensemble compared to KS energy differences E0−E1
using (a) the symmetry-enforced tri-ensembles described in section III C and by equation (42), and (b) the symmetry-broken tri-ensemble
described in section III D and by equation (43). Insets show detail of regions for small Ne. The labels ‘e’ and ‘b’ denote results from the
symmetry-enforced and symmetry-broken ensembles. HXC denotes results with a weight-dependent Hartree, while XC denotes the use of a
“traditional” Hartree, as explained in section II C.

Table I. Ensemble-corrected excitation energies tabulated versus number of electrons Ne, compared with KS energy difference E1 −E0, all
reported in eV. Ω1 and Ω

flip
1 are the first excitation energies of the symmetry-enforced bi-ensemble (energy of triplet) and flipped symmetry-

enforced bi-ensemble (energy of closed-shell singlet), respectively. Ω2 are the second excitation energies, corresponding to the open-shell
singlet, obtained from the symmetry-enforced and symmetry-broken tri-ensembles, respectively. The labels ‘e’ and ‘b’ denote results from the
symmetry-enforced and symmetry-broken ensembles. HXC denotes results with a weight-dependent Hartree, while XC denotes the use of a
“traditional” Hartree, as explained in section II C.

Ωe
1 Ωb

1 Ω
flip,e
1 Ω

flip,b
1 Ωe

2 Ωb
2

Ne E1 −E0 XC HXC XC HXC XC HXC XC HXC XC HXC XC HXC
2 6.988 0.2471 −10.29 3.190 −7.346 −4.741 −1.229 −5.722 −2.210 9.369 8.491 8.633 7.755
4 2.925 0.3339 −4.119 1.574 −2.879 −2.061 −0.5767 −2.474 −0.9901 3.949 3.578 3.639 3.268
6 1.822 0.2493 −2.454 1.027 −1.676 −1.298 −0.3970 −1.557 −0.6563 2.469 2.244 2.275 2.049
8 1.319 0.1687 −1.741 0.7424 −1.168 −0.9351 −0.2989 −1.127 −0.4902 1.797 1.638 1.653 1.494
10 1.032 0.1161 −1.350 0.5734 −0.8927 −0.7268 −0.2382 −0.8793 −0.3906 1.413 1.291 1.299 1.177
20 0.4931 0.0253 −0.6384 0.2558 −0.4079 −0.3372 −0.1159 −0.4140 −0.1928 0.6846 0.6293 0.6270 0.5717
30 0.3236 0.0065 −0.4189 0.1613 −0.2641 −0.2179 −0.0761 −0.2695 −0.1277 0.4520 0.4165 0.4133 0.3778
40 0.2408 0.0005 −0.3119 0.1172 −0.1952 −0.1607 −0.0566 −0.1996 −0.0954 0.3374 0.3114 0.3083 0.2822
42 0.2291 −0.0001 −0.2967 0.1111 −0.1855 −0.1527 −0.0538 −0.1897 −0.0909 0.3211 0.2964 0.2933 0.2686
48 0.1999 −0.0015 −0.2590 0.0960 −0.1615 −0.1327 −0.0469 −0.1652 −0.0794 0.2805 0.2591 0.2562 0.2347
50 0.1917 −0.0018 −0.2485 0.0918 −0.1548 −0.1153 −0.0165 −0.1584 −0.0762 0.3374 0.2486 0.2458 0.2252
60 0.1592 −0.0028 −0.2065 0.0754 −0.1283 −0.1052 −0.0373 −0.1313 −0.0634 0.2239 0.2069 0.2044 0.1874
70 0.1362 −0.0032 −0.1766 0.0640 −0.1095 −0.0897 −0.0319 −0.1121 −0.0543 0.1917 0.1772 0.1749 0.1605
80 0.1189 −0.0033 −0.1542 0.0555 −0.0956 −0.0782 −0.0279 −0.0978 −0.0475 0.1676 0.1550 0.1529 0.1403
90 0.1056 −0.0033 −0.1369 0.0490 −0.0846 −0.0693 −0.0248 −0.0867 −0.0422 0.1488 0.1377 0.1358 0.1246
100 0.0949 −0.0032 −0.1233 0.0439 −0.0762 −0.0622 −0.0222 −0.0779 −0.0379 0.1339 0.1239 0.1221 0.1121
110 0.0862 −0.0032 −0.1118 0.0397 −0.0689 −0.0564 −0.0202 −0.0707 −0.0345 0.1216 0.1126 0.1109 0.1019
120 0.0780 −0.0030 −0.1024 0.0363 −0.0631 −0.0516 −0.0185 −0.0647 −0.0316 0.1115 0.1031 0.1016 0.0933
130 0.0729 −0.0029 −0.0945 0.0334 −0.0582 −0.0476 −0.0171 −0.0597 −0.0292 0.1029 0.0952 0.0938 0.0862
140 0.0676 −0.0028 −0.0879 0.0309 −0.0541 −0.0441 −0.0158 −0.0554 −0.0270 0.0955 0.0884 0.0870 0.0800
150 0.0631 −0.0027 −0.0818 0.0288 −0.0503 −0.0412 −0.0148 −0.0517 −0.0253 0.0891 0.0825 0.0812 0.0746
160 0.0591 −0.0026 −0.0766 0.0269 −0.0471 −0.0385 −0.0139 −0.0484 −0.0237 0.0835 0.0773 0.0761 0.0699

The difference between excitation energies obtained from the
symmetry-enforced and symmetry-broken tri-ensembles is

Ω
e
2 −Ω

b
2 =−1

4
Exc[ραα ]+

1
4

Exc[ραβ±βα ], (44)

which is simply −1/4 times the difference for the bi-
ensemble.

IV. RESULTS AND DISCUSSION

A. Bi-ensembles and Triplet Instability

The corrected first excitation energies Ωe
1 from the bi-

ensemble, according to the symmetry-enforced scheme, are
shown in figure 5a. All numerical results are also tabulated in
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(a) Bi-ensemble (b) Tri-ensemble

Figure 7. Difference between excitation energies of (a) triplet excited states from the symmetry-enforced (Ωe
1) and symmetry-broken (Ωb

1)
bi-ensembles, as given in equation (39), (b) singlet excited states from the symmetry-enforced (Ωe

2) and symmetry-broken (Ωb
2) tri-ensembles,

as given in equation (44). The labels ‘e’ and ‘b’ denote results from the symmetry-enforced and symmetry-broken ensembles.

table I. We find that in this case, like all cases we study in this
paper, that the excitation energies go to zero in the thermody-
namic limit, in agreement with the expectation from Luttinger
liquid theory.50 When a “traditional” Hartree DFA is used (the
XC case), the ensemble-corrected triplet energies are positive
for Ne ≤ 40, after which they become negative, indicating that
the triplet is lower in energy: a triplet instability. These XC
excitation energies are one order of magnitude smaller than
the KS difference in energies. With the ensemble-generalized
LSDA HXC functional, Ωe

1 is negative for all Ne. The re-
sults from the symmetry-broken scheme are shown in figure
5b. There is an upward energy shift up to 3 eV compared to
symmetry-enforced results, which makes the XC case positive
for all Ne. The energy difference between symmetry-enforced
and symmetry-broken is plotted in figure 7a. The HXC case
remains negative for all Ne.

We note that finding a multiplet ordering different from
the one assumed in construction of our ensemble means that
the construction was invalid according to the rules of GOK
EDFT, although this re-ordering is not a problem according
to the more general EDFT definition in which weights must
be monotonically non-increasing with energy only within a
given symmetry.60 Triplet instabilities are known to exist
in other theories, such as Hartree-Fock,65–67 time-dependent
Hartree-Fock (TDHF),68,69 and TDDFT.70 Triplet instabilities
have also been reported in the 3D electron gas at metallic
densities.71 In the 1D case, this instability appears to be a fail-
ure of the theory given the known singlet ground state.48

To investigate the triplet instability further, and attempt to
correct our ensemble construction, we consider the possibility
that the true system should have a triplet GS and a singlet first
excited state, as suggested by the negative triplet excitation
energy. The weighting scheme of this flipped system is:

wm =

{
1−w

3 m < 3,
w m ≥ 3.

(45)

This weighting provides an ensemble-corrected excitation en-
ergy from this triplet GS to the singlet:

Ω
flip,e
1 = E0 −E1 −EHxc[ραα ]+EHxc[ρGS], (46)

where E0 −E1 = εn=1 − εn=2. We use EHxc[ραα ] for the en-
ergy of all states in the triplet, as for the symmetry-enforced
bi-ensemble (section III A). For the symmetry-broken bi-
ensemble, the flipped excitation energy is obtained from:

Ω
flip,b
1 = E0 −E1 −

2
3

EHxc[ραα ]−
1
3

EHxc[ραβ±βα ]

+EHxc[ρGS], (47)

where we use EHxc[ραα ] for the energy of just two in the
triplet, and EHxc[ραβ±βα ] for the third, as was done for the
symmetry-broken bi-ensemble (section III B). In both cases
we treat EHxc[ρGS] as the excited-state singlet. These results
are shown in figure 5c-d. We find that the excitation energies
are negative in all cases (XC and HXC, symmetry-enforced
and symmetry-broken). The XC energy corrections are small,
on the order of 0.01 eV in both the symmetry-enforced and
symmetry-broken cases. An excitation energy in the flipped
ensemble opposite to the original ensemble would provide a
consistent picture of the energy ordering of the closed-shell
singlet and the triplet. This is satisfied for the XC cases (ex-
cept symmetry-enforced Ne ≥ 42), which had not shown a
triplet instability. However for HXC, though corrected energy
differences are above the KS difference, the negative excita-
tion energies contradict the instability of the triplet found in
the original bi-ensembles. Thus the triplet instability for HXC
is accompanied by an inconsistency about the energy order-
ing, indicating a deficiency of this approximation.

B. Singlet Excitations from Tri-ensembles

All singlet excitation energies from the tri-ensemble are
positive (figure 6). For the symmetry-enforced tri-ensemble,
the corrected second excitation energy Ωe

2 is greater in value
than the KS second excitation energy E1−E0, regardless of
whether a weight-dependent Hartree is used or not. The
weight-dependent Hartree contribution is negative, and it is on
the order of 0.01 eV lower than the XC correction at Ne = 160.

The symmetry-broken tri-ensemble provides a corrected
second excitation energy Ωb

2 which is again greater in value
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than the KS energy difference, whether the Hartree term used
is weight-dependent or not. The corrections are somewhat
smaller than in the symmetry-enforced case. The weight-
dependent Hartree contribution is identical to the symmetry-
enforced case, as discussed above. We find that the ex-
citation energy difference between symmetry-enforced and
symmetry-broken approaches is always positive and mono-
tonically decreasing. It is about an order of magnitude smaller
than the excitation energies themselves (figure 7), and around
25% of the correction, indicating that this distinction has only
a moderate impact on the results (unlike for the bi-ensemble).

C. Effective Mass

Given that our excitation energies go to zero in the ther-
modynamic limit, we cannot meaningfully study corrections
to the bandgap, but we instead investigate the effective mass
to look for non-vanishing corrections. The effective mass is
a useful parameter by which to validate a model’s treatment
of interactions, and it can be directly studied in real systems.
For instance, many studies have tried to reproduce the experi-
mentally measured occupied bandwidth of sodium, with vary-
ing success.72–74 To compute an effective mass in our case,
we consider the excitation as an energy difference between
k-points k2 and k1 on parabolic bands in a UEG, as in equa-
tion (28). We assume that the k-points for the excitation are
the same for the non-interacting system and the interacting,
ensemble-corrected system, which is appropriate if the Fermi
level is not shifted with respect to the states by the interaction,
like the condition for a conserving approximation in many-
body perturbation theory.75 With these considerations, we ob-
tain the effective mass as:

∆E ip

∆E int =
EI −E0

ΩI
=

h̄2k2
2

2me
− h̄2k1

2

2me

h̄2k2
2

2m* − h̄2k1
2

2m*

=
m*

me
. (48)

While formally the effective mass is only defined for pe-
riodic systems, we study the behavior and limit of this ratio
as our model approaches a periodic system. The effective
masses at the thermodynamic limit (estimated as the results
at our largest Ne, 160) are reported in Table II. In each case,
the electron mass ratio approaches a limit which differs from
the bare mass, in which case m∗/me = 1. By contrast, it can
be shown analytically that GS DFT with LDA gives the effec-
tive mass in a UEG always equal to the free electron mass.76

That a nontrivial change in the effective mass is found through
EDFT shows the promise of EDFT for periodic systems, and
the promise for additional insight to be obtained through the
use of more sophisticated ensemble DFAs.

The effective masses for the bi-ensemble exhibit several
different behaviors (figure 8). For the symmetry-enforced bi-
ensemble with weight-dependent Hartree, the effective mass
is negative and decreases monotonically until Ne = 30, after
which point the effective mass increases slightly as it con-
verges to its limit. The symmetry-broken bi-ensemble with
weight-dependent Hartree also has a negative effective mass
is negative which decreases monotonically throughout the

range as it converges to its limit (except for a small bump
at Ne = 140), to a more negative value that the symmetry-
enforced case. These negative effective masses (related to
the triplet instability in this case) indicate hole rather than
electron character, which is unexpected for a metallic sys-
tem. For the symmetry-enforced bi-ensemble with “tradi-
tional” Hartree, the effective mass is positive for small Ne,
diverges near Ne = 41 and changes sign, reaching a negative
limiting value. For the symmetry-broken bi-ensemble with
“traditional” Hartree, the effective mass is positive for small
Ne, decreases sharply to a minimum of 1.775 at Ne = 6, before
increasing asymptotically towards its limit. The divergence
appears pathological, although convergent limiting behavior
is still achieved.

We find positive and monotonically decreasing effective
masses in all cases for the tri-ensemble. The use of weight-
dependent Hartree in the tri-ensemble results increases the
effective mass by a fairly constant value of 0.06-0.09 in
both version of the tri-ensemble, as shown in figures 8c-
d. Construction of the flipped bi-ensemble leads to effective
masses that are now positive, as expected. They show non-
monotonic behavior and unexpectedly approach values sub-
stantially larger than 1, as shown in figure 9. The HXC re-
sults are systematically larger than for XC, and the symmetry-
enforced results are systematically larger than the symmetry-
broken results.

We are not aware of any reported values for the effective
mass of electrons in the 1D UEG, so for comparison we will
look at the literature for 2D and 3D UEGs. Conventionally,
UEGs are characterized by the density parameter rs, which
is the Wigner-Seitz radius measured in Bohr radii a0. The
1D generalization63 is rs = a0/2ρ , which in our case is 1.89.
We compare our results to the effective mass for the UEG ob-
tained via Monte Carlo for 2D and 3D systems with rs ≤ 4,
representing the metallic regime, where rs ≤ 1 represents the
high-density regime.77,78 In the 3D case, effective masses in
the UEG obtained by variational diagrammatic Monte Carlo
(MC) have been found to be 0.955(1) for rs = 1, and 0.996(3)
at rs = 4.77 Other calculations on the 3D UEG done via dif-
fusion MC extrapolated to the thermodynamic limit have re-
ported an effective mass of 0.85 at rs ≈ 4.79 For a 2D UEG,
diffusion MC gave results for a paramagnetic case of 0.955(2)
at rs = 1 and 1.04(2) at rs = 5.80 The ferromagnetic case gave
0.851(5) at rs = 1 and 0.74(1) at rs = 5;80 one might imag-
ine this would have some relation to the triplet instability,
but the numerical values are very different from our results.
In the high-density limit for a 3D electron gas, the effective
mass is expected to be less than one.81 Our 1D results in
the range 0.7 to 0.85 from the tri-ensemble are fairly simi-
lar to the 2D and 3D cases. These results seem reasonable
given the weak dependence on dimensionality seen between
2D and 3D, and the spread in literature values for the effective
masses. The symmetry-enforced bi-ensemble with HXC gives
-0.7714 which is similar in magnitude to the tri-ensemble re-
sults, but the other bi-ensemble cases seem increasingly un-
physical with magnitudes up to -22.66.
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(a) Symmetry-enforced bi-ensemble with weight-dependent Hartree (b) Symmetry-enforced bi-ensemble with “traditional” Hartree

(c) Symmetry-broken bi-ensemble with weight-dependent Hartree (d) Symmetry-broken bi-ensemble with “traditional” Hartree

(e) Symmetry-enforced tri-ensemble (f) Symmetry-broken tri-ensemble

Figure 8. Effective masses, calculated from equation (48), for (a, b) the symmetry-enforced bi-ensemble described in section III A, (c, d) the
symmetry-broken bi-ensemble described in section III B, (e) the symmetry-enforced tri-ensemble of section III C, and (f) the symmetry-broken
tri-ensemble of section III D. In (b) a horizontal line is drawn at 0 and a vertical line marks the divergence around Ne = 41. The labels ‘e’
and ‘b’ denote results from the symmetry-enforced and symmetry-broken ensembles. HXC denotes results with a weight-dependent Hartree,
while XC denotes the use of a “traditional” Hartree, as explained in section II C.

V. CONCLUSION

Since EDFT was designed for the treatment of discrete en-
ergy levels, it does not readily adapt to the band structure of
solids. We have therefore instead approached the application
of EDFT to a periodic system through a set of systems hav-
ing the same fixed average density, and studied its approach
to the thermodynamic limit. We have considered ensemble-
corrected excitation energies for systems where the KS po-
tential is set to the PIB potential, becoming the UEG in the
thermodynamic limit, and avoiding the need for SCF calcula-

tions.
Corrections to the singlet energy obtained from a tri-

ensemble are positive, increasing the KS energy differences.
We find an apparently spurious triplet instability for bi-
ensembles with weight-dependent Hartree, which is accom-
panied by inconsistency with the energy ordering from a bi-
ensemble with flipped multiplets. In the symmetry-enforced
bi-ensemble, with “traditional” Hartree, this instability is only
found for Ne > 40, and no instability is found in the symmetry-
broken bi-ensemble with “traditional” Hartree, yielding a cor-
rected triplet energy which is higher than the KS energy.
While EDFT provides nonzero corrections to excitation ener-
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(a) Flipped symmetry-enforced bi-ensemble (b) Flipped symmetry-broken bi-ensemble

Figure 9. Effective mass, calculated from equation (48), for the flipped (a) symmetry-enforced and (b) symmetry-broken bi-ensemble described
in section IV A. The labels ‘e’ and ‘b’ denote results from the symmetry-enforced and symmetry-broken ensembles. HXC denotes results with
a weight-dependent Hartree, while XC denotes the use of a “traditional” Hartree, as explained in section II C.

Table II. Effective masses in the thermodynamic limit, estimated
from Ne = 160, obtained from equation (48) using the ensemble-
corrected excitation energies. The labels ‘e’ and ‘b’ denote results
from the symmetry-enforced and symmetry-broken ensembles. HXC
denotes results with a weight-dependent Hartree, while XC denotes
the use of a “traditional” Hartree, as explained in section II C.

Excitation HXC XC

Ωe
1 −0.7714 −22.66

Ωb
1 −1.254 2.195

Ω
flip,e
1 4.263 1.534

Ω
flip,b
1 2.495 1.223

Ωe
2 0.7648 0.7079

Ωb
2 0.8454 0.7766

gies in the finite regime, in the approach to the thermodynamic
limit, these tend to zero, as do the KS energy differences as
well, which is expected for a metallic system.47 We consider
symmetry-enforced and symmetry-broken schemes of han-
dling the triplet and singlet states that are indistinguishable
in density, and find that for the bi-ensemble the symmetry-
broken case leads to more physically reasonable results tha,
whereas for the tri-ensemble the difference in results between
the schemes is relatively small.

Effective masses for each of the methods were calculated,
and found to approach a positive limit in the tri-ensemble, and
a negative limit in most cases for the bi-ensemble. The flipped
bi-ensemble led to positive values greater than 1. A non-trivial
correction to the effective mass is found in the thermodynamic
limit, even with our simple Hartree and LSDA XC approxi-
mations. Results in the range 0.7-0.85 are found from the tri-
ensemble, similar to literature results for 2D and 3D UEGs.
These results indicate the potential of EDFT in the periodic
limit to provide meaningful results.

Prior work by Kraisler and Kronik59 examined the deriva-
tive discontinuity of XC functionals (which corrects the KS
gap) in the thermodynamic limit, based on ensemble consid-

erations (but not on GOK EDFT). They note that the Hartree-
based contribution to the missing derivative discontinuity van-
ishes in the thermodynamic limit, with the exact XC compo-
nent being the source of a useful correction. They note that, as
we see in our results, LDA-based corrections to the gap vanish
due to known insufficiencies in this approximation. By con-
trast, our work, investigating effective masses as well, found
that there can be a nontrivial correction from LDA in the ther-
modynamic limit.

We have investigated the impact of using two different
forms of ensemble-generalized Hartree, one in which there
is explicit weight dependence in the functional, which is then
applied to densities of individual states, and one in which the
weight-dependence is only accounted for in the ensemble den-
sity (the “traditional” Hartree). However, it is known that nei-
ther method treating the ensemble Hartree is sufficient to treat
systems with “difficult” spin multiplets in finite systems.43

The weight-dependent Hartree contribution has a minor im-
pact for tri-ensembles, but for the bi-ensembles, we find its
use leads to a triplet instability but more physically reason-
able effective masses. In all cases we have used the former
explicitly weight-dependent ensemble-generalized LDA XC.
Given that neither LDA nor GGA in periodic systems exhibit
the necessary divergence of fxc,14 it reasonable to expect that
implementation of more sophisticated ensemble DFAs, partic-
ularly non-local and GIE-free XC, would be needed for fuller
analysis of EDFT’s applicability and limitations in treating pe-
riodic systems.

While the treatment of increasingly large finite systems at
a fixed average density may not be practical for extracting in-
formation about real systems, our results from this approach
suggest that a formulation of EDFT for periodic systems could
provide non-trivial results even with simple DFAs, and moti-
vate further work on finding a suitable formulation. Further
study of UEG systems in the thermodynamic limit can be ex-
tended to 2D and 3D, with a more realistic Coulomb interac-
tion, as well as to models with a nonuniform potential, such
as the Kronig-Penney model,82 which is not metallic and can
be used to investigate whether non-trivial bandgap corrections
can be found. Finally, the study of systems with an odd num-
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ber of electrons, which have a different multiplet structure,
may offer further insight.
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