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Ensemble density functional theory (EDFT) is a promising alternative to time-dependent density functional
theory for computing electronic excitation energies. Using coordinate scaling, we prove several fundamental
exact conditions in EDFT and illustrate them on the exact singlet bi-ensemble of the Hubbard dimer. Several
approximations violate these conditions, and some ground-state conditions from quantum chemistry do not
generalize to EDFT. The strong correlation limit is derived for the dimer, revealing weight-dependent derivative
discontinuities in EDFT.
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I. INTRODUCTION

Sophisticated functional approximations and a relatively
low computational cost have made density functional the-
ory [1,2] (DFT) the prevailing method used in electronic
structure calculations [3–7]. Currently, the most popular way
to access excited states in the DFT formalism is through
time-dependent DFT (TDDFT) [7–11], which has been used
to predict electronic excitation spectra among other proper-
ties. Although TDDFT has been incredibly successful [11],
standard approximations fail to replicate charge-transfer ex-
citation energies [12], correctly locate conical intersections
[13], or recover double excitations [11] without an ad hoc
dressing [14]. A less well-known but comparably rigorous
alternative to TDDFT is ensemble density functional theory
[15–17] (EDFT), which is currently experiencing a renais-
sance [18–35]. As the EDFT field is revived, it is important to
find exact conditions that can be enforced on newly developed
EDFT approximations. This is especially important in EDFT,
where the choice of ensemble weights is unlimited (assum-
ing they are normalized and are monotonically nonincreasing
with energy) and can significantly impact the accuracy of the
energies.

Exact conditions were essential for developing accu-
rate approximate functionals in ground-state DFT, and we
expect them to be even more critical in EDFT [36–38].
Recently, it was shown that, for realistic Coulombic densities,
many popular approximate functionals satisfy or partially sat-
isfy many exact conditions [38]. Thus, a crucial question is
which, if any, such conditions can be generalized to ensemble
density functional theory?

Motivated by the complexity of the ensemble framework,
there have been significant developments towards understand-
ing the limits of the exact ensemble energy. Two examples
are the work by Gould [39], which is based on scaling to the
strongly correlated regime, and the thorough analysis of the
exact energies in the work of Nagy [40]. These works and oth-
ers are based on fundamental scaling relationships that should
apply to both ground states and an ensemble framework

but are not explicitly derived and validated. Many of these
conditions were initially proven for the ground state by
Perdew and Levy [37]. We work at that level of rigor for the
ensemble theory.

Through this work, we demonstrate that several
fundamental exact conditions from the ground-state theory
hold for the ensemble theory but that others do not naturally
carry over. We generalize coordinate scaling inequalities and
equalities of the exchange and correlation energies and the
concavity condition to ensembles. Although the logical steps
are identical to those of ground-state theory (since both rely
on the variational principle), the crucial point is that such
steps and the resulting conclusions appear in this work. Using
the Hubbard dimer, we show examples of each foundational
condition and examine approximations in EDFT, finding
examples of compliance and violation.

Figure 1 illustrates some of these conditions nicely [41].
It shows the limits (red) one can place on the U = 5 dimer
(black) from results for U = 4 (blue), using one of our
inequalities. The rest of this paper explains the behavior of
these curves, including nonmonotonicity with weight and
their shapes for large U . These exact results provide examples
of the many ways in which EDFT can differ from ground-state
DFT.

II. THEORY

A. Ensemble density functional theory

EDFT is a formally exact generalization of ground-state
KS-DFT, where the ensemble consists of several eigenstates
of an N-electron system. Consider any ensemble density ma-
trix, �̂w, of the form

�̂w(r1 . . . rN , r′
1 . . . r′

N ) =
M∑

m=0

wm |�m(r1 . . . rN )〉

× 〈�m(r′
1 . . . r′

N )| , (1)
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FIG. 1. The Hubbard dimer singlet bi-ensemble correlation en-
ergies (negative values) and kinetic contribution (positive values) for
U = 4 (light blue) and U = 5 (black) as a function of site occupation
and different weights. Red curves deduced from U = 4 constrain the
U = 5 curve via Eq. (22).

where �m are any orthonormal wave functions, and wm

are positive, monotonically nonincreasing, and normalized
weights. The expectation value of any operator Â is then

A[�̂w] = Tr{�̂wÂ} =
M∑

m=0

wm 〈�m| Â |�m〉 . (2)

An ensemble energy is then the variational minimum of the
Hamiltonian, yielding the ensemble energy,

Ew = min
�w

Tr{�̂wĤ}. (3)

Transition energies can be deduced from differences between
ensemble calculations of differing weights [42]. EDFT tells us
that there exists a w-dependent density functional

Fw[n] = min
�w→n

Tr{�̂w(T̂ + V̂ee )}, (4)

where T̂ is the kinetic energy operator and V̂ee is the electron-
electron repulsion. We denote the minimizer by �w[n]. Then

Ew = min
n

{
Fw[n] +

∫
n(r)v(r)dr

}
, (5)

where v(r) is the external potential.
Throughout this work, we use A[�̂] to denote a functional

of �̂, and also A[n] to denote a density functional. These are
two different functionals, as they have different arguments.
However, one can convert a density matrix functional into a
density functional, by defining:

Aw[n] = A[�̂w[n]], (6)

i.e., insertion of the unique, w-dependent minimizing density
matrix for a given density into any functional of the den-
sity matrix creates a unique w-dependent ensemble density

functional. The minimizing density is

nw(r) =
M∑

m=0

wmnm(r), (7)

where nm(r) is the density of the mth level.
A key facet of EDFT is that the equivalence between the

exact density and the noninteracting KS density is only true
for the ensemble average, and it is not generally true for the
individual densities within the weighted sum. The following
conditions are valid only for the ensemble energy, not the
individual excited-state energies.

B. Exact conditions

Uniform coordinate scaling has been responsible for mul-
tiple advancements in DFT. However, coordinate scaling
investigations in EDFT have thus far only been used to
define the adiabatic connection formula for the exchange-
correlation energy [40] or to examine the behavior of EDFT
in the low-density and high-density regimes [39]. Additional
work on foundational theorems include the virial theorem
for EDFT by Nagy [43–45] and the signs of correlation
energy components, by Pribram-Jones et al. [19]. We build
on this foundation by deriving uniform scaling inequalities
based on the variational definition of the ensemble func-
tional [37,46]. We also provide numerical verification and
proofs of the basic principles and some additional exact
conditions.

We use norm-preserving homogeneous scaling of the coor-
dinate r→ γ r with 0 < γ < ∞. The scaled density matrix is
defined as

�w,γ (r1 . . . r′
N ) := γ 3N �w(γ r1 . . . γ r′

N ), (8)

and a scaled density is nγ (r) = γ 3n(γ r). Trivially,

T [�w,γ ] = γ 2T [�w], Vee[�w,γ ] = γ Vee[�w]. (9)

Because these scale differently, �w,γ [n] �= �w[nγ ].
By the variational principle F [nw,γ ] � F [�̂w,γ [n]], which

gives the fundamental inequality of scaling,

Tw[nγ ] + Vee,w[nγ ] � γ 2Tw[n] + γVee,w[n]. (10)

Manipulation of this formula yields [37],

Tw[nγ ] � γ 2Tw[n],Vee,w[nγ ] � γVee,w[n], γ � 1

Tw[nγ ] � γ 2Tw[n],Vee,w[nγ ] � γVee,w[n], γ � 1. (11)

Next, we turn to the KS scheme used in modern EDFT
approaches. Here Fw[n] = TS,w[n] + EHXC,w[n] where TS,w is
the KS kinetic energy and EHXC,w is the Hartree-exchange-
correlation. Because there is no interaction,

TS,w[nγ ] = γ 2TS,w[n]. (12)

Moreover, because the Hartree exchange is linear in the scal-
ing parameter:

EHX,w[nγ ] = γ EHX,w[n]. (13)

In EDFT, the separation of Hartree from the exchange
is more complicated than in ground-state DFT [24,33,39].
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Subtracting these larger energies following the usual proce-
dure from ground-state DFT [37] yields

TC,w[nγ ] � γ 2TC,w[n], EC,w[nγ ] � γ EC,w[n], γ � 1

TC,w[nγ ] � γ 2TC,w[n], EC,w[nγ ] � γ EC,w[n], γ � 1, (14)

where EC,w[n] is the correlation energy, and TC,w = Tw − TS,w

is its kinetic contribution. Considering γ = 1 + ε in Eq. (14),
and taking ε → 0, yields differential versions of Eq. (14):

d

dγ

{
TC,w[nγ ]

γ 2

}
� 0,

d

dγ

{
EC,w[nγ ]

γ

}
� 0, (15)

for all γ . Combining these using Nagy’s generalization
(Eq. (24) of Ref. [44]) of the ground-state equality

dEC,w[nγ ]

dγ

∣∣∣∣
γ=1

= EC,w[n] + TC,w[n], (16)

we find

d2

dγ 2

{
EC,w[nγ ]

γ

}
� 0, (17)

or the condition for concavity in the ensemble correla-
tion energy. Our first derivative conditions [Eq. (15)] are
a generalization to ensembles of the ground-state result
reported in Ref. [38]. That result is in fact a tighter
bound than the original condition [Eq. (39) derived by
Levy and Perdew in Ref. [47]]. Our concavity condi-
tion, Eq. (17), is the ensemble form of Eq. (40) in
Ref. [47], but expressed more compactly as a function
of γ .

Equations (10), (14), and (17) are primary results of the
current work, being the ensemble generalizations of their
ground-state analogs. An immediate application of Eq. (13) is
to extract the HX component from any HXC approximation.
As the conditions limit growth with γ ,

EHX,w[n] = lim
γ→∞ EHXC,w[nγ ]/γ , (18)

an exact condition that can prove useful for separating HX
from C components [21,39].

To conclude this section, we use the pioneering rela-
tionship between coupling constant and coordinate scaling.
Defining λ dependence via

Fλ
w [n] = min

�w→n
Tr{�w(T̂ + λV̂ee )}, (19)

Nagy showed [40]

Eλ
HXC,w[n] = λ2EHXC,w[n1/λ]. (20)

Using Eq. (20), it is possible to rewrite all results given in
terms of scaled densities as λ-dependent relations. Such re-
lations are well known and extensively used in ground-state
DFT via the adiabatic connection formalism [48,49]. For real-
space Hamiltonians, these relations are simply a rewriting of
the scaling relations in a more popular form, but they also
apply to lattice Hamiltonians, where scaling is not possible.
Converting from scaling in Eq. (16) gives

T λ
C,w[n] = Eλ

C,w[n] − λ
dEλ

C,w[n]

dλ
. (21)

The scaling inequalities [Eqs. (14)] become

T λ
C,w[n] � TC,w[n], Eλ

C,w[n] � λEC,w[n], λ � 1,

T λ
C,w[n] � TC,w[n], Eλ

C,w[n] � λEC,w[n], λ � 1, (22)

with differential versions

dT λ
C,w[n]

dλ
� 0, Eλ

C,w[n] � λ
dEλ

C,w[n]

dλ
, (23)

while Eq. (17) becomes quite simply:

d2Eλ
C,w[n]

dλ2
� 0. (24)

Note that all inequalities for EC,w, both coordinate-scaled
[Eqs. (14), (15)] and λ-dependent [Eqs. (22), (23)], are
also true for the potential contribution to correlation UC,w =
EC,w − TC,w,

U λ
C,w[n] � λUC,w[n], λ � 1,

U λ
C,w[n] � λUC,w[n], λ � 1. (25)

The HX energy [Eq. (18)] may be extracted via

EHX,w[n] = lim
λ→0

Eλ
HXC,w[n]/λ. (26)

Our last condition concerns the relationship between DFT
and traditional approaches to quantum chemistry. In the
ground state, it has long been known [50,51] that 0 � EHF

C �
EC, where EHF

C is the traditional definition of the correlation
energy, i.e., relative to the Hartree-Fock (HF) energy (we treat
only restricted HF here, RHF). Given the complications of
EDFT, we only discuss the case of the first singlet bi-ensemble
for two electrons. In this case, we equate ensemble HF (EHF)
with an EDFT EXX calculation (exact exchange only) [23].
The only difference between EHF and EDFT is that the EHF
quantities are evaluated on the approximate EHF density,
while EDFT quantities are evaluated on the exact density. The
same variational reasoning leads us to

0 � EHF
C,w � EC,w[n], (27)

where EHF
C,w = Ew − EHF

w , and EHF
w minimizes Fw = TS,w +

EHX,w. We leave the more general case to braver souls.

C. Hubbard dimer model

To illustrate these exact conditions, we use the Hubbard
dimer model, which can be solved analytically. The Hamilto-
nian of the Hubbard dimer is

Ĥ = −t
∑

σ

(ĉ†
1σ ĉ2σ + h.c.) + U

∑
i

n̂i↑n̂i↓ +
∑

i

vin̂i, (28)

where t is the hopping parameter, U the on-site electrostatic
self-repulsion, and vi the on-site potential (which controls the
asymmetry of the dimer). For this lattice system, with N = 2,
the electronic density is characterized by a single number, the
difference between occupations of the two sites, �n = n2 −
n1. The λ dependence of any quantity is found by replacing U
by λU , keeping �n fixed. We choose t = 1/2 everywhere.

We consider the simplest bi-ensemble, a mixture of the
ground state with the first excited singlet. Full analytic expres-
sions of |�0〉 and |�1〉, as well as plots of various bi-ensemble
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FIG. 2. Absolute value of the density of the Hubbard dimer bi-ensemble, plotted for various weight values as a function of �v. Here we
set U = 0 (left), U = 1 (center), and U = 5 (right).

quantities are included in the Appendix. The value of �nw is
constrained by w:

|�nw| � 2w, (29)

where w = 1 − w, i.e., is smaller than that of the ground state
(w = 0).The total energy of the ensemble is defined as

Ew = w 〈�0| Ĥ |�0〉 + w 〈�1| Ĥ |�1〉 . (30)

For this bi-ensemble, the exact HX energy has the simple
analytical form [23]:

EHX,w = U

2

[
1 + w + (1 − 3w)

w2

�n2
w

4

]
. (31)

The density of each state is trivially �ni = 2[(β−
i )

2 − (β+
i )

2
],

with β±
i reported in the Appendix, meaning that the ensemble

density is

�nw = 2w[(β−
0 )2 − (β+

0 )2] + 2w[(β−
1 )2 − (β+

1 )2], (32)

where w = 1 − w. Plots of this difference are included in
Fig. 2 for three interaction strengths, U = 0, 1, and 5.

Analyzing this figure, it is clear that there are vast differ-
ences in the behavior of �nw with respect to the value of U ,
illustrating the importance of developing weight-dependent
approximations for electronic correlation. Two characteristics
are present in all plots of �nw, these being an adherence to the
symmetric limit (�v = �nw = 0) and a maximum value con-
straint imposed by the representability condition |�nw| � 2w,
which each curve approaches as �v → ∞.

As predicted by EDFT in Eq. (32), the density is linear in
w. For sufficiently large U , there exists a value of �v at which
the initial slope of the first excited state density difference
is negative. Still, it always becomes positive for sufficiently
large �v. Thus, there is a specific value of �v at which the
first excited state density vanishes, and all curves meet at that
point, independent of w. This point tends to �v = U as U
becomes large.

For finite values of U , a trend in curve steepness with
respect to the weight is evident for small �v; the steepness
of each curve is directly proportional to the value of w, sig-
nifying that ensembles with larger w values approach their
maximum value more quickly. The severity of steepness in-
creases drastically as U is increased, as shown by the behavior
of the U = 5 curves as �v → 0. Here, the densities increase
rapidly to |�nw| ≈ 2w, becoming nearly perfectly antisym-

metric around �v = U , with a very sharp dive to 0 for very
small �v. It also appears that all �nw curves approach the
same value at �v ≈ U as U → ∞. As U → ∞ the density
forms a step function, flipping from 2w to 2w at �v = U .

The correlation energies are then found by using the exact
expressions:

TC,w = Tw − TS,w, (33)

UC,w = Vee,w − EHX,w, (34)

EC,w = TC,w + UC,w. (35)

FIG. 3. Fw/U of the Hubbard dimer bi-ensemble plotted as a
function of �v for various w values. Here we set U = 1 (top) and
U = 5 (bottom).
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FIG. 4. Fw/U of the Hubbard dimer bi-ensemble plotted as a
function of �nw for various w values. Here we set U = 1 (top) and
U = 5 (bottom).

We also examine the properties of the Hubbard dimer
equivalent of the universal part of the density functional,
Fw = Ew − �v�nw/2, plotting again as a function of �v and
�nw in Figs. 3 and 4, respectively. In Fig. 3, one can see that
Fw is linear with respect to bi-ensemble weight when plotted
as a function of �v. This characteristic is not present in Fig. 4,
where monotonicity is broken as �nw → 2w. Furthermore, as
U is increased, one can see the appearance of regimes around
�nw = 2w, with Fw being nearly independent of �nw for
�nw < 2w and linearly increasing as �nw > 2w. Addition-
ally, the curves depicting Fw tend to flatten as w increases.

In contrast, we plot EHXC,w in Fig. 5 and see it is non-
monotonic in w. The curvature of EHXC,w changes from convex
to concave as the weight increases, and the EHXC,w curves
cross each other at various points, with the most noticeable
crossings happening at U = 1. However, the curves cross at
all the values of U plotted. We conclude that curves become
nonmonotonic when plotted as a functional of the density
instead of the potential, as the curves of Fig. 2 are certainly
not monotonic.

For fixed �v, Fig. 6 illustrates that Ew is correctly linear
in w. The curves are uninteresting for U = 1 but develop a
pinch around �v = U as U grows larger. However, Fig. 7
shows that, as a functional of �n, the curves are no longer
linear in w. They are not even monotonic, as �nw → 2w,
Ew → −∞, the curves cross. Interesting behavior also exists

FIG. 5. EHXC,w/U of the Hubbard dimer bi-ensemble plotted as a
function of �nw for various w values. Here we set U = 1 (top) and
U = 5 (bottom).

as U is increased, with Ew becoming ever more slowly varying
with density for �nw < 2w. This behavior may be explained
through the relationship between �nw and �v shown in the
right panel of Fig. 2, where there is a drastic change in �nw

for �v ≈ 0.

III. RESULTS

In this section, we examine all the exact conditions within
the context of the Hubbard dimer model. We also extend
our analysis to the strongly correlated regime and quantum
chemistry analogies.

A. Inequalities

First, we examine the correlation inequalities [Eq. (22)].
We highlight in Fig. 8 the definite signs of the correlation
energy and its components. This illustrates results initially
introduced by Pribram-Jones et al. [19].

Looking at Figs. 9 and 10, one can see that the correlation
inequalities of Eq. (22) are satisfied for all values of �nw.
There is a clear trend for the weight for the symmetric dimer:
the ground state has the maximum magnitude in each plot
and then decreases in magnitude with an increase in w. So
for the symmetric dimer (�nw = 0), w = 0 has the largest
maximum, and w = 0.5 has the smallest. This trend no longer
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FIG. 6. Total energy of the Hubbard dimer bi-ensemble plotted
as a function of �v for various w values. Here we set U = 1 (top)
and U = 5 (bottom).

holds for �nw �= 0. Alternative approaches were implemented
in which �v was held fixed, again showing no clear trend for
asymmetric dimers. Furthermore, the inequalities of Eq. (22)
become equalities as �nw → 2w, explaining the flat behavior
of the w = 0.5 curves for �nw = 1. The shape of all curves
depends strongly on U .

B. Adiabatic connection

We now examine the adiabatic connection curves in
Fig. 11. First, we note that many curves look similar to
ground-state DFT and are monotonically decreasing and are
convex. However, as �nw increases, the curves vary less with
λ. For nonzero �nw, concave regions appear when w > 1/3.
Such concave curvature has not been observed in ground
states in the Hubbard dimer [52,53] and is only observed in
the ensemble framework as more weight is placed on the
excited state. This offers an interesting counterexample to
the convexity of the adiabatic connection, which is still an
open question in density functional theory [54]. Convexity
of the adiabatic connection has never been proven, and our
example makes it unlikely to be true for ensembles. We also
note that the convexity in the adiabatic connection curve is
not equivalent to the concavity condition for the correlation
energies, Eq. (24).

FIG. 7. Total energy of the Hubbard dimer bi-ensemble plotted
as a function of �nw for various w values. Here we set U = 1 (top)
and U = 5 (bottom).

In Fig. 11, we also observe an interesting change in the
ordering of the HX energy values based on the weights. For
�nw < 0.6, the HX energy monotonically decreases as the
weights increase and the spacing between the values shrinks.
However, after that point, the ordering shifts and the w = 0.5
weight has the maximum HX value. Additionally, as �nw →
1, and λ → ∞, the value of the HXC expression becomes w

independent. We also show that all UHXC,w curves approach
their corresponding HX value as λ → 0, in accordance with
Eq. (26). The nonmonotonic behavior in Fig. 1 can be easily
understood. By definition, Ew(�v) is linear in w, as is Fw. But,

FIG. 8. Variation of the potential (blue), kinetic (red), and total
(black) correlation energies in the Hubbard dimer bi-ensemble, plot-
ted as functions of site-occupation of the first site for various weights.
We set U = 1 on the left and U = 5 on the right.
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FIG. 9. Correlation inequalities [Eq. (22)] for the total (top), kinetic (middle), and potential (bottom) correlation energies, depicted by
varying λ in the Hubbard dimer bi-ensemble with U = 1.

when converted to density functionals, and with KS quantities
subtracted, these become highly nonmonotonic. Moreover,
Fig. 12 demonstrates that the convexity conjecture [54] for the
ensemble adiabatic connection curve is not generally satisfied.

This condition is only postulated for the ground-state case.
Unlike Eq. (24), the convexity conjecture of the adiabatic
connection curve is a stronger conjecture related to the third λ

derivative of Eλ
C,w[n].

FIG. 10. Correlation inequalities [Eq. (22)] for the total (top), kinetic (middle), and potential (bottom) correlation energies, depicted by
varying λ in the Hubbard dimer bi-ensemble with U = 5.
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FIG. 11. Ensemble adiabatic connection for U = 5 and various �nw; circles represent the weight-dependent HX energy, which the HXC
expression approaches as λ → 0.

C. Concavity condition of the correlation energy

We illustrate the concavity condition of Eq. (24) using
contour plots depicting all possible combinations of U and
n1, making use of the reduced variable ũ = U/

√
1 + U 2. Il-

lustrated by Fig. 13, the second derivative is negative for all
values of U , thus satisfying the concavity condition for all
electronic correlation strengths. The standard use of exact
conditions in DFT is to ensure that approximate functionals
satisfy them [38]. We illustrate our conditions by applying
them to existing approximations on the Hubbard model. The
first is the standard many-body expansion in powers of the
interaction, U , which we perform up to second order, i.e., the
analog of Møller-Plesset perturbation theory, denoted U -PT2
(not shown in Fig. 13). The second is less familiar: an ex-
pansion in powers of �n around the symmetric case, �n = 0,

FIG. 12. The second derivative of the ensemble adiabatic con-
nection with respect to λ for U = 5 and �nw = 0.9.

called δ-PT2 [55]. This can be considered a (tortured) analog
of the gradient expansion of DFT [36], as it is an expansion
around the uniform limit. Figure 13 shows that the δ-PT2
approximation violates the concavity condition, even for w =
0, while U -PT2 never does by construction. The violations
are not monotonic with increasing weights, as w = 0.4 has
none. Deur et al. reported that, compared to U-PT2, δ-PT2
produced more accurate equi-ensemble energies and densities.
Likely, the accuracy of δ-PT2 could be further improved by
imposing concavity. Recent advances in EDFT, such as the
direct ensemble correction [20] and the perturbative EDFT
method [56], are explicitly computed in the perturbative limit,
w → 0+. If an approximation is derived before such a limit is
taken, and its ground-state approximation satisfies concavity;
the resulting approximation should satisfy concavity also.

D. Strong correlation

We now examine the behavior of the Hubbard dimer in
the strongly correlated regime. For fixed w, as U becomes
large, one can keep �v fixed or �v/U fixed. The former
was explored by Deur et al. [55] and produces the pale blue
curves of Fig. 14. As the figure shows, the blue curves yield
the correct answer only for |�nw| � 2w, which shrinks to a
point as w → 0.

The appropriate expansion to find EC,w(�n) for large U and
|�n| > 2w is shown in the red curves. We take U → ∞ but
keep �v/U fixed. This step is required to include values of �n
away from �n ≈ 0 while including all allowed values of �n.
The strongly correlated limit of Ref. [55] can be recovered
from our limit by expressing the �v dependence explicitly
and taking U → ∞; this no longer keeps the ratio �v/U
fixed. A careful expansion yields the total energy as a function
of x = �v/U :

Ew(x) → U

(
g(0)

w (x) + g(2)
w (x)

U 2
+ · · ·

)
, (36)
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FIG. 13. The second derivative of the Hubbard dimer bi-ensemble correlation energy with respect to U for all values of the reduced
variable ũ = U/

√
1 + U 2. The concavity condition is satisfied exactly, but is violated by the δ-PT2 approximation in certain regimes (red

denotes positive). U -PT2 automatically satisfies the concavity condition by construction.

where

g(0)
w (x) = 1

3
(2 − (c −

√
3s)h) − 2shw√

3
, (37)

and

g(2)
w (x) = 1

2h

(
(α − 3)s√

3
− (α + 1)c

)
+ 1

h
(αc +

√
3s)w,

(38)

FIG. 14. Exact correlation energy (black), leading-order expan-
sion in large U (red), and the expansion in the symmetric limit (blue)
for the correlation energy are all plotted as a function of the exact
density. Small arrows indicate the region between 2w and −2w

where the symmetric expansion matches the exact.

where α = |4x/(x2 − 1)|, c = cos(φ), and s = sin(φ) with,

φ = 1

3
cos−1

(
3h2 − 4

h3

)
, h =

√
3x2 + 1. (39)

The angle φ is positive for all values of x, where it takes its
maximal value of π/3 as x → 0 and minimal value of 0 as
x → ±1, and in the limit φ(x → ±∞) = π/6. Because the
angle is constrained to 0 � φ � π/3, the sine and cosine must
be 0 � c, s �

√
3/2.

The corresponding density is found via �nw =
2dEw/d (�v),

�nw(x) = 2

(
g(0)′

w (x) + g(2)′
w (x)

U 2
+ · · ·

)
, (40)

where primes denote derivatives with respect to x. Retaining
only zero-order terms yields,

g(0)′
w (x) = 1

h

(
(γ − 3x)s√

3
− (γ + x)c

)
+ 2

h
(γ c +

√
3xs)w,

(41)
with γ = sgn[x(1 − x2)]. Because the expansion in U is sin-
gular near x = 0 and x = ±1, g(2)

w (x) diverges at |x| = 1, and
even n(0)

w (x) = 2g(0)′
w (x) contains discontinuous steps. While

formally correct in the limit U → ∞, the exact density can-
not have such steps due to the Hohenberg-Kohn theorems.
We therefore smooth Eq. (41) with exponentials that become
infinitely sharp as U → ∞:

�nw ≈ x

|x| ( f (|x|) − 1)

(
1 + (1 − 2w) tanh

(
β(|x| − 1)

2

))
,

(42)
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FIG. 15. Smooth approximation for the density Eq. (42) (light
red) and the exact density (black) Eq. (32) plotted against �v.

where f (x) = [exp(βx) + 1]−1 is the Fermi-Dirac distribution
with β = 5U . This is plotted in Fig. 15 and is compared with
the exact density. As U → ∞, Eq. (42) matches Eq. (41).

Using our leading-order density in Eq. (41) and the next
higher-order correction to the ensemble energy in Eq. (36),
we derive the strongly correlated expansion of the universal
part of the energy functional,

F (�nw(x)) = U

(
g(0)

w (x) − x�nw(x)

2

)
+ g(2)

w (x)

U
. (43)

Finally, we subtract the remaining components to determine
the correlation energy:

EC,w(�nw(x)) ≈U

(
g(0)

w (x) − x�nw(x)

2

)
− EHX,w(�nw(x))

− TS,w(�nw(x)) + g(2)
w (x)

U
. (44)

Including only the lowest order and inserting the smooth
density, Eq. (42), yields the plot in Fig. 14, and the curves
in Fig. 15. We also plot the next order contribution to the
correlation energy, Eq. (44), in Fig. 16. To avoid divergences
from α at x = ±1, we use a smooth approximation to the
absolute values that appear in the denominator of Eq. (38).

In Fig. 14, we plot the exact correlation energy, our
approximation [Eq. (44)], and the symmetric limit expan-
sion of Deur et al. [55], each evaluated at the exact
density. The expansion about the symmetric limit cor-
rectly produces the strongly correlated correlation energy,
but only for |�nw| � 2w, as expected by its derivation.
Our expansion yields the correct limit for all allowed
�nw, including the slope discontinuity at |�nw| = 2w.
Such w-dependent derivative discontinuities occur only in
EDFT.

The approximate weight-dependent strongly correlated
correlation energy along the density-functional adiabatic con-
nection is derived along with further analysis of the energy
components and approximation of the density. For the strong-
interaction limit of the dimer, the correlation energy contains
nontrivial weight dependence. This differs from the real-space
continuum case [39] where the energies are known to be
weight independent. This is not a counterexample to that case

FIG. 16. The exact (black) correlation energy as a function of
the exact density and our higher-order expansion in large U (light
purple) for the correlation energy Eq. (44), plotted as a function of
the smooth approximation for the density Eq. (42).

because the dimer is a site model. This difference is apparent
in the expansion of the strongly correlated energies in powers
of the coupling constant. Our first correction [Eq. (43)], rel-
ative to the leading term, is O(λ−2) and differs qualitatively
from the O(λ−1/2) behavior in the continuum.

We produce an expression for Eλ
C,w(�nw ) where �nw is

kept fixed for each λ along the adiabatic connection. For
sufficiently large U we neglect all terms of O(1/U 2) and
lower. In this limit, �nw(x) → �n(0)

w (x), and by the adia-
batic connection construction we have the requirement that
�v/U ≈ �vλ/(λU ), where �vλ is the λ-dependent potential
that keeps �nw fixed along the connection. As a consequence,
to leading order,

�vλ(�nw ) ≈ λ�v(0)(�nw ), (45)

and thus,

Eλ
w(�nw ) ≈ λUg(0)

w (x(0)(�nw )) + g(2)
w [x(0)(�nw )]

λU
, (46)

where x(0)(�nw ) = �v(0)(�nw )/U is the inversion of the
leading-order density-potential map, Eq. (45). The universal
part of the functional is found by subtracting the external
potential energy from Eq. (46),

Fλ
w (�nw ) ≈ λU

(
g(0)

w (x(0)(�nw )) − x(0)(�nw )�nw

2

)

+ g(2)
w (x(0)(�nw ))

λU
. (47)

To produce the correlation energy we subtract from Eq. (47)
the KS kinetic energy [Eq. (A3)] and the HX energy
[Eq. (A4)],

Eλ
C,w(�nw ) ≈ λU

(
g(0)

w (x(0)(�nw )) − x(0)(�nw )�nw

2

− eHx,w(�nw )
)

− Ts,w(�nw )

+ g(2)
w (x(0)(�nw ))

λU
, (48)

195120-10



EXACT CONDITIONS FOR ENSEMBLE DENSITY … PHYSICAL REVIEW B 109, 195120 (2024)

FIG. 17. Tc,w , Eq. (49), Uc,w , Eq. (50), Tw , Eq. (51), and Vee,w , Eq. (52) for various values of w and U = 100. The exact values in the
strongly correlated limit are represented by the black curves, which are exact as U → ∞.

where �nw remains fixed for all λ and eHx,w(�nw ) =
EHx,w(�nw )/U .

Equation (21) yields expressions for the separate kinetic
and potential contributions to the correlation energy,

TC,w(�nw ) ≈ 2g(2)
w (x(0)(�nw ))

U
− Ts,w(�nw ), (49)

UC,w(�nw ) ≈ U

(
g(0)

w (x(0)(�nw )) − x(0)(�nw )�nw

2

− eHx,w(�nw )

)
− g(2)

w (x(0)(�nw ))

U
. (50)

From the separate contributions of the correlation energy, we
deduce that,

Tw(�nw ) ≈ 2g(2)
w (x(0)(�nw ))

U
, (51)

Vee,w(�nw ) ≈U

(
g(0)

w (x(0)(�nw )) − x(0)(�nw )�nw

2

)

− g(2)
w (x(0)(�nw ))

U
. (52)

We plot Eqs. (49)–(52) in Fig. 17 with the exact expressions
in black and the approximate expressions evaluated with the
smooth density in purple. In all plots, we use the same smooth
approximation to the absolute values in the denominators of

g(2)
w (x). The errors in the plots of the correlation kinetic energy

vanish as U → ∞.
We compare our result in Eq. (44), for |�nw| � 2w,

with the symmetric limit expansion of Deur et al. [55]. To
properly compare our approximate correlation energy to the
previously reported expansion in the symmetric limit, we pro-
duce the weight-dependent constant that vanishes in the limit
U → ∞,

EC,w(�nw )

U
≈ w

U
− 1

2

(
w − (3w − 1)

w2

�n2
w

4

)
, (53)

which is derived following the procedure in Ref. [55].

E. Quantum chemistry

Finally, we examine the difference between the DFT and
HF correlation energies and their components in detail. Our
HF definition is based on a weighted sum of ground- and
excited-state Coulomb-exchange energies [28,34]. We de-
fine the Hartree-Fock solution of each state [analogous to
Eq. (A2)] to be

|�i〉 = αHF
i (|12〉 + |21〉) + β+HF

i |11〉 + β−HF
i |22〉 , (54)
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FIG. 18. Absolute value of the density of the Hubbard dimer bi-ensemble, plotted for various weight values as a function of �v. Here we
set U = 0 (left), U = 1 (center), and U = 5 (right). Dashed curves represent the ensemble HF approximation, and the solid curves are exact.

with coefficients determined to first order in U :

αHF
0 = 2t/cHF

0 αHF
1 = −�v2

eff,w/2tcHF
1

β±HF
0 = 1/2 ± �veff,w/cHF

0 β±HF
1 = ±�veff,w/cHF

1

cHF
0 = 2

√
4t2 + �v2

eff,w cHF
1 = �veff,w

√
2 + �v2

eff,w/2t2.

Here the weight-dependent effective mean-field potential
�veff,w takes the form [55]

�veff,w = �v + (1 − 3w)

w2

U�nHF
w

2
, (55)

where �nHF
w is found from Eq. (32) with coefficients as above.

The self-consistent EHF density is found numerically
throughout this work by solving Eq. (A2). Plots of the
exact/EHF self-consistent site-occupation differences are in-
cluded below in Fig. 18 for various interaction strengths,
U = 0, 1, and 5. Here and for the remainder of this sec-
tion, we denote the exact solution using solid curves and the
EHF approximation using dashed curves. Looking at the left
panel (U = 0) of Fig. 18, the EHF approximation agrees with
the exact density, as expected in the limit of weak correla-
tion. One can see that the exact/EHF densities (regardless of
weight) begin to differ as U is increased, but must always
match at the origin (where �v = �nw = 0) and as �v → ∞
(where |�nw| = 2w). This behavior would be expected to
hold for larger U values, although as noted previously in
Ref. [55], there exists a critical interaction strength Ucrit at
which nonphysical behavior is observed for symmetric dimers
with bi-ensemble weight w � 1/3. This critical interaction
strength is

Ucrit = w

3w − 1
. (56)

For w → 1
2 , Ucrit → 1. At this point, the energy expression

for dimers with U > Ucrit have multiple degenerate min-
ima. This explains the deviation from expected behavior
for w = 0.4, 0.5 in the right panel of Fig. 18, where both
curves approach a finite value as �v → 0. We also plot the

exact/EHF bi-ensemble total energy below, using two in-
teraction strengths (U = 1 and U = 5) to examine the EHF
approximation in more detail. We depict this quantity as a
function of �v below in Fig. 19 and separate each w value
in new plots to better illustrate the weight dependence of Ew

and EHF
w .

Analyzing Fig. 19, one can see that the EHF approximation
obeys the variational principle for all viable weight values
(where w � 0.5); as the weight of the first excited state is
increased, both the exact/EHF energy becomes more positive
for all �v. We note that the EHF approximation always ap-
proaches the exact energy as �v → ∞, as shown previously
for the ground state [52].

Below, we provide plots of the total weight-dependent cor-
relation energy, as well as its kinetic/potential contributions,

FIG. 19. Total energy of the Hubbard dimer bi-ensemble plotted
as a function of �v/U for various w values. Dashed is HF and solid
is exact.
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FIG. 20. Total correlation energy of the Hubbard dimer bi-
ensemble plotted as a function of �v for various w values. Dashed
is HF and solid is exact.

in Figs. 20–22. Note that the definition of the EHF correlation
energy is

EHF
C,w = Ew[nw] − EHF

w

[
nHF

w

]
, (57)

where each energy functional has been minimized by its re-
spective weight-dependent self-consistent density.

Looking at Fig. 20, it is evident that the behavior of the
correlation energy greatly depends upon the value of w. We
find that the inequality relating the exact/approximate cor-
relation energy holds for all ensembles (i.e., EHF

C � EC for
all weights). We show that a different trend exists for the
kinetic/potential correlation components, as the inequalities
describing the ground state (T HF

C � TC and U HF
C � UC) no

longer apply for ensembles with w �= 0.
Note that for each of these quantities, the EHF approximate

correlation energy matches the exact solution at �v = 0, ex-
cept for strongly correlated systems with w � 1/3 (due to the
nonphysical behavior in this regime discussed previously).

It also is known that T HF
C can become negative in the

ground state of the Hubbard dimer [57], and we find this is
also true when w �= 0, but this is likely an artifact of lat-
tice Hamiltonians that cannot occur in the real-space analog
[50,54].

FIG. 21. Kinetic correlation energy of the Hubbard dimer bi-
ensemble plotted as a function of �v for various w values. Dashed
is HF and solid is exact.

FIG. 22. Potential correlation energy of the Hubbard dimer bi-
ensemble plotted as a function of �v for various w values. Dashed
is HF and solid is exact.

IV. CONCLUSIONS

The principal result of our work is the proving of several
new conditions for use in ensemble DFT. The proofs follow
exactly the same logical steps as in the ground-state case, as
they are based on the variational principle and the nature of the
kinetic and Coulomb repulsion operators. Because EDFT is
based on a generalization of the variational principle, we were
able to prove the same results using the minimizing density
matrix instead of the ground-state wave function. That this is
necessary can be seen from the fact that none of the proofs are
valid for, e.g., an individual excited state.

Exact calculations in EDFT for realistic Hamiltonians are
rare and challenging to perform. However, the two-site Hub-
bard model makes an ideal test case for novel results in DFT,
as its tiny Hilbert space makes exact calculations almost triv-
ial. It has the added benefit of covering both weak and strong
correlation regimes. A crucial part of such tests is including
asymmetric potentials so that the entire space of densities is
examined.

Many of our exact conditions have been illustrated here
on the Hubbard dimer. However, there are crucial differences
between realistic Hamiltonians and lattice models. An ex-
ample is the strictly correlated limit, where even the form
of the leading corrections to strict correlation is different,
as we show explicitly here. Hence, our results for the dimer
do not contradict general results for realistic Hamiltonians.
We also generalized earlier results for EDFT for the strongly
correlated dimer, and our generalization is not restricted to
being nearly symmetric.

We anticipate that, initially, our conditions will be built
into new approximate functionals. Density functional approx-
imations are more likely to produce accurate energies when
they share the same constraints as the exact energy [38]. We
note that our exact conditions apply to all allowed ensemble
weights, suggesting they cannot be used to guide choices
of weights. However, since these conditions are independent
of weight, they are applicable to both Gross-Oliviera-Kohn
schemes and any future schemes. These conditions also ap-
ply to the spin-restricted ensemble-referenced Kohn-Sham
(REKS) [58,59] methods that have advanced EDFT-based
methods forward.

One may also test a novel and existing EDFT approxima-
tion for its ability to reproduce these fundamental constraints
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for any choice of weight. If the approximate functional fails an
exact condition for certain weights, one would exclude those
choices for use with that approximation. Another limitation of
lattice models is that the approximations that are commonly
used in realistic calculations cannot be applied. Thus they
cannot be directly tested. But we can still illustrate the idea,
as we have done for δ-PT2. This type of analysis can be
used to guide next steps in developing approximate ensemble
functionals.
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APPENDIX: ANALYTIC SOLUTIONS OF THE HUBBARD
DIMER BI-ENSEMBLE

Here, we report the analytic solutions of the Hubbard dimer
that were used to create a bi-ensemble of the ground and
first excited singlet states. Solving the dimer Hamiltonian
[Eq. (28)], one obtains the energies:

Ei = 2U

3
+ 2r

3
cos

[
θ + 2π (i + 1)

3

]
, i = 0, 1. (A1)

Here we have defined

r =
√

3(4t2 + �v2) + U 2,

cos (3θ ) = 9U
(
�v2 − 2t2

) − U 3

r3
,

where t represents the hopping parameter, U the on-site
electrostatic self-repulsion, and �v = v2 − v1 the on-site po-
tential difference. Furthermore, the wave function of each
state may be written as

|�i〉 = αi(|12〉 + |21〉) + β+
i |11〉 + β−

i |22〉 , (A2)

with coefficients:

αi = 2t (Ei − U )

ciEi
, β±

i = U − Ei ± �v

ci
,

ci =
√

2
[
�v2 + (Ei − U )2

(
1 + 4t2

/
E2

i

)]
.

Here, |i j〉 represents a state where an electron is present
at sites i and j. These analytical expressions (both of
the energy and wave function) may also be found in
the Appendixes of Refs. [23] and [60]. We also make
use of the derivation put forth by Deur et al. [23]
to define:

Ts,w = −2t
√

w2 − �n2
w/4 (A3)

EHx,w = U

2

(
1 + w − (3w − 1)

w2

�n2
w

4

)
. (A4)
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