13. Yang, Z.-Y.; Pribram-Jones, A.; Burke, K.; Ullrich, C.A. Direct extraction of excitation energies from ensemble density-functional theory. Phys. Rev. Lett., 119, 033003 (2017). web pdf supp

12. Kaufman, J.L.; Pomrehn, G.S.; Pribram-Jones, A.; Mahjoub, R.; Ferry, M.; Laws, K.J.; and Bassman, L. Stacking fault energies of non-dilute binary alloys using special quasirandom structures. Phys. Rev. B, 95, 094112 (2017). web pdf

11. Aron-Dine, S.; Pomrehn, G.S.; Pribram-Jones, A.; Laws, K.J.; Bassman, L. First principles investigation of structural and magnetic disorder in CuNiMnAl and CuNiMnSn Heusler alloys. Phys. Rev. B95, 024108 (2017). web pdf

10. Pribram-Jones, A.; Grabowski, P.E.; Burke, K. Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem. Phys. Rev. Lett., 116, 233001 (2016). web pdf

9. Smith, J.; Pribram-Jones, A.; Burke, K. Exact thermal density functional theory for a model system: Correlation components and accuracy for the zero-temperature exchange-correlation approximation. Phys. Rev. B, 93, 245131 (2016). web pdf

8. Burke, K.; Smith, J.; Grabowski, P.E.; Pribram-Jones, A. Exact conditions on the temperature dependence of density functionals. Phys. Rev. B, 93, 195132 (2016). web pdf

7. Pribram-Jones, A.; Burke, K. Connection formulas for thermal density functional theory. Phys. Rev. B, 93, 205140 (2016). web pdf

6. Cangi, A.; Pribram-Jones, A. Efficient formalism for warm dense matter simulations. Phys. Rev. B92, 161113(R)(2015). web pdf

5. Knudson, M.D.; Desjarlais, M.P.; Pribram-Jones, A. Adiabatic release measurements in aluminum between 400-1200 GPa: Characterization of aluminum as a shock standard in the multimegabar regime. Phys. Rev. B, 91, 224105 (2015).  web pdf

4. Pribram-Jones, A.; Gross, David A.; Burke, K. DFT: A Theory Full of Holes? Ann. Rev. Phys. Chem., 66, 283-304 (2015), invited article . web pdf

3. Yang, Z.-H.; Trail, J.R.; Pribram-Jones, A.; Burke, K.; Needs, R.J.; Ullrich, C.A. Exact and approximate Kohn-Sham potentials in ensemble density-functional theory. Phys. Rev. A, 90, 042501 (2014). web pdf

2. Pribram-Jones, A.; Yang, Z.-H.; Trail, J.R.; Burke, K.; Needs, R.J.; Ullrich, C.A. Excitations and benchmark ensemble density functional theory for two electrons. J. Chem. Phys., 140, 18A541 (2014). web pdf

1. Pribram-Jones, A.; Pittalis, S.; Gross, E.K.U.; Burke, K. Thermal Density Functional Theory in Context. In: Frontiers and Challenges in Warm Dense Matter (F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, eds.), vol. 96 of Lecture Notes in Computational Science and Engineering, pp. 25–60, Springer International Publishing, 2014. web pdf